所有颜色的图像


433

类似于allrgb.com上的图像,制作每个像素都是唯一颜色的图像(两次不使用颜色,并且不丢失任何颜色)。

提供一个生成此类图像的程序,以及输出的屏幕截图或文件(以PNG格式上传)。

  • 纯粹通过算法创建图像。
  • 图片必须为256×128(或可以截图并保存为256×128的网格)
  • 使用所有15位颜色*
  • 不允许外部输入(也不允许网络查询,URL或数据库)
  • 不允许嵌入图像(可以是源图像的图像,例如 Piet
  • 允许抖动
  • 这不是一场简短的代码竞赛,尽管它可能会赢得您的投票。
  • 如果您真的很想挑战,请执行512×512、2048×1024或4096×4096(以3位为增量)。

计票方式为投票。投票选出最优雅的代码和/或有趣的算法所制作的最美丽的图像。

当然可以采用两步算法,首先生成漂亮的图像,然后将所有像素调整为一种可用的颜色,但不会赢得您的优雅。

* 15位颜色是32768种颜色,可以通过以相等的距离和相等的范围混合32个红色,32个绿色和32个蓝色来制成。示例:在24位图像(每通道8位)中,每通道的范围是0..255(或0..224),因此将其分成32个等距的阴影。

非常清楚,图像像素的数组应该是一个排列,因为所有可能的图像都具有相同的颜色,只是在不同的像素位置。我将在这里给出一个琐碎的排列,它一点也不漂亮:

Java 7

import java.awt.image.BufferedImage;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import javax.imageio.ImageIO;

public class FifteenBitColors {
    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(256, 128, BufferedImage.TYPE_INT_RGB);

        // Generate algorithmically.
        for (int i = 0; i < 32768; i++) {
            int x = i & 255;
            int y = i / 256;
            int r = i << 3 & 0xF8;
            int g = i >> 2 & 0xF8;
            int b = i >> 7 & 0xF8;
            img.setRGB(x, y, (r << 8 | g) << 8 | b);
        }

        // Save.
        try (OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB15.png"))) {
            ImageIO.write(img, "png", out);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

在此处输入图片说明

优胜者

因为7天结束了,所以我宣布获胜者

但是,绝不认为这已经结束。我和所有读者始终欢迎更多很棒的设计。不要停止创建。

优胜者:fejesjoco,获得231票


8
当您说“允许抖动”时,您是什么意思?这是否是“每个像素是唯一的颜色”规则的例外?如果没有,您允许什么?
彼得·泰勒

1
这意味着您可以将颜色放置在图案中,因此当用眼睛观看时,它们会融合为不同的颜色。例如,在allRGB页面上看到“显然所有RGB”图像,那里还有许多其他图像。
Mark Jeronimus 2014年

8
实际上,我发现您的琐碎排列示例令人非常满意。
杰森C

2
@ Zom-B男人,我很喜欢这个职位。谢谢!
杰森C

7
美丽的结果/答案!
EthanB

Answers:


534

C#

我在中间放置一个随机像素,然后开始在最类似于它们的邻域中放置随机像素。支持两种模式:最小选择时,一次只考虑一个相邻像素;使用平均选择时,所有(1..8)均被平均。最小选择有些嘈杂,平均选择当然会更加模糊,但实际上两者看起来都像绘画。经过一些编辑后,这是当前的,经过某种程度优化的版本(它甚至使用并行处理!):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Drawing;
using System.Drawing.Imaging;
using System.Diagnostics;
using System.IO;

class Program
{
    // algorithm settings, feel free to mess with it
    const bool AVERAGE = false;
    const int NUMCOLORS = 32;
    const int WIDTH = 256;
    const int HEIGHT = 128;
    const int STARTX = 128;
    const int STARTY = 64;

    // represent a coordinate
    struct XY
    {
        public int x, y;
        public XY(int x, int y)
        {
            this.x = x;
            this.y = y;
        }
        public override int GetHashCode()
        {
            return x ^ y;
        }
        public override bool Equals(object obj)
        {
            var that = (XY)obj;
            return this.x == that.x && this.y == that.y;
        }
    }

    // gets the difference between two colors
    static int coldiff(Color c1, Color c2)
    {
        var r = c1.R - c2.R;
        var g = c1.G - c2.G;
        var b = c1.B - c2.B;
        return r * r + g * g + b * b;
    }

    // gets the neighbors (3..8) of the given coordinate
    static List<XY> getneighbors(XY xy)
    {
        var ret = new List<XY>(8);
        for (var dy = -1; dy <= 1; dy++)
        {
            if (xy.y + dy == -1 || xy.y + dy == HEIGHT)
                continue;
            for (var dx = -1; dx <= 1; dx++)
            {
                if (xy.x + dx == -1 || xy.x + dx == WIDTH)
                    continue;
                ret.Add(new XY(xy.x + dx, xy.y + dy));
            }
        }
        return ret;
    }

    // calculates how well a color fits at the given coordinates
    static int calcdiff(Color[,] pixels, XY xy, Color c)
    {
        // get the diffs for each neighbor separately
        var diffs = new List<int>(8);
        foreach (var nxy in getneighbors(xy))
        {
            var nc = pixels[nxy.y, nxy.x];
            if (!nc.IsEmpty)
                diffs.Add(coldiff(nc, c));
        }

        // average or minimum selection
        if (AVERAGE)
            return (int)diffs.Average();
        else
            return diffs.Min();
    }

    static void Main(string[] args)
    {
        // create every color once and randomize the order
        var colors = new List<Color>();
        for (var r = 0; r < NUMCOLORS; r++)
            for (var g = 0; g < NUMCOLORS; g++)
                for (var b = 0; b < NUMCOLORS; b++)
                    colors.Add(Color.FromArgb(r * 255 / (NUMCOLORS - 1), g * 255 / (NUMCOLORS - 1), b * 255 / (NUMCOLORS - 1)));
        var rnd = new Random();
        colors.Sort(new Comparison<Color>((c1, c2) => rnd.Next(3) - 1));

        // temporary place where we work (faster than all that many GetPixel calls)
        var pixels = new Color[HEIGHT, WIDTH];
        Trace.Assert(pixels.Length == colors.Count);

        // constantly changing list of available coordinates (empty pixels which have non-empty neighbors)
        var available = new HashSet<XY>();

        // calculate the checkpoints in advance
        var checkpoints = Enumerable.Range(1, 10).ToDictionary(i => i * colors.Count / 10 - 1, i => i - 1);

        // loop through all colors that we want to place
        for (var i = 0; i < colors.Count; i++)
        {
            if (i % 256 == 0)
                Console.WriteLine("{0:P}, queue size {1}", (double)i / WIDTH / HEIGHT, available.Count);

            XY bestxy;
            if (available.Count == 0)
            {
                // use the starting point
                bestxy = new XY(STARTX, STARTY);
            }
            else
            {
                // find the best place from the list of available coordinates
                // uses parallel processing, this is the most expensive step
                bestxy = available.AsParallel().OrderBy(xy => calcdiff(pixels, xy, colors[i])).First();
            }

            // put the pixel where it belongs
            Trace.Assert(pixels[bestxy.y, bestxy.x].IsEmpty);
            pixels[bestxy.y, bestxy.x] = colors[i];

            // adjust the available list
            available.Remove(bestxy);
            foreach (var nxy in getneighbors(bestxy))
                if (pixels[nxy.y, nxy.x].IsEmpty)
                    available.Add(nxy);

            // save a checkpoint
            int chkidx;
            if (checkpoints.TryGetValue(i, out chkidx))
            {
                var img = new Bitmap(WIDTH, HEIGHT, PixelFormat.Format24bppRgb);
                for (var y = 0; y < HEIGHT; y++)
                {
                    for (var x = 0; x < WIDTH; x++)
                    {
                        img.SetPixel(x, y, pixels[y, x]);
                    }
                }
                img.Save("result" + chkidx + ".png");
            }
        }

        Trace.Assert(available.Count == 0);
    }
}

256x128像素,从中间开始,最小选择:

256x128像素,从左上角开始,最小选择:

从中间开始平均选择256x128像素:

这是两个10帧的动画,它们显示了最小选择和平均选择的工作原理(对gif格式表示敬意,因为它只能以256色显示它):

最小选择模式会随着小波前(如斑点)的增长而增长,并随即填充所有像素。但是,在平均模式下,当两个不同颜色的分支开始彼此相邻生长时,将出现一个小的黑色间隙,因为没有什么东西会足够接近两种不同的颜色。由于这些间隙,波前将大一个数量级,因此该算法将慢得多。但这很好,因为它看起来像正在生长的珊瑚。如果我放弃平均模式,则可能会更快一些,因为每种新颜色都将与每个现有像素进行比较,约为2-3倍。我没有其他方法可以对其进行优化,我认为它已经足够好了。

最吸引人的是,这里是512x512像素的渲染,中间开始,最小选择:

我就是不能停止玩这个!在上面的代码中,颜色是随机排序的。如果我们根本不排序,或不按色相((c1, c2) => c1.GetHue().CompareTo(c2.GetHue()))排序,则分别得到这些(中间开始和最小选择):

另一个组合,其中的珊瑚形状一直保留到最后:色调平均选择,并带有30帧的动画:

更新:已经准备好了!!!

您想要高分辨率,我想要高分辨率,您不耐烦,我几乎没睡。现在,我很高兴地宣布它已经准备就绪,生产质量。而且,我将大放异彩,并发布出色的1080p YouTube视频!单击此处观看视频,让我们传播它,以宣传怪胎风格。我还在http://joco.name/的博客上发布了内容,还将发布技术文章,介绍所有有趣的细节,优化,视频制作方式等。最后,我将共享源代码 GPL下的代码。它变得非常庞大,因此适当的托管是最佳的选择,我将不再编辑答案的以上部分。确保在发布模式下编译!该程序可以很好地扩展到许多CPU内核。4Kx4K渲染大约需要2-3 GB RAM。

我现在可以在5到10个小时内渲染出巨大的图像。我已经有一些4Kx4K渲染,我将在以后发布。该程序已经进步了很多,进行了无数次优化。我还使它易于使用,因此任何人都可以轻松使用它,它具有不错的命令行。该程序还具有确定性的随机性,这意味着您可以使用随机种子,并且每次都会生成相同的图像。

这是一些大效果图。

我最喜欢的512:


(来源:joco.name

出现在我的视频中的2048 :


(来源:joco.name


(来源:joco.name


(来源:joco.name


(来源:joco.name

前4096个渲染(待办事项:正在上载,并且我的网站无法处理大流量,因此将其暂时重新定位):


(来源:joco.name


(来源:joco.name


(来源:joco.name


(来源:joco.name


25
现在这很酷!
Jaa-c

5
非常好:-D现在做一些更大的!
吱吱作响的ossifrage

20
你是真正的艺术家!:)
AL

10
一张要多少钱?
primo 2014年

16
我正在制作巨大的渲染图和1080p视频。要花几个小时或几天。我希望有人能够从大型渲染器创建打印件。甚至是T恤:一侧编码,另一侧编码。有人可以安排吗?
fejesjoco

248

处理中

更新!4096x4096图片!

通过将两个程序结合在一起,我将第二篇文章合并到了这篇文章中。

可以在此处的Dropbox上找到所选图像的完整集合。(注意:DropBox无法为4096x4096图像生成预览;只需单击它们,然后单击“下载”即可)。

如果只看一看,这个(平铺)!在这里,它是按比例缩小的(以下还有更多),原始2048x1024:

在此处输入图片说明

该程序的工作原理是从颜色多维数据集中的随机选择的点开始走路径,然后将其绘制到图像中随机选择的路径中。有很多可能性。可配置的选项包括:

  • 颜色立方体路径的最大长度。
  • 穿越颜色立方体的最大步长(值越大,差异越大,但当事情变紧时,到达终点的小路径的数量最少)。
  • 平铺图像。
  • 当前有两种图像路径模式:
    • 模式1(此原始帖子的模式):在图像中找到一块未使用的像素并将其渲染到该块。块可以随机放置,也可以从左到右排序。
    • 模式2(我合并到第二篇文章的模式):选择图像中的一个随机起点,并沿着未使用像素的路径行走;可以在用过的像素周围走动。此模式的选项:
      • 一组要进入的方向(正交,对角线或两者兼有)。
      • 在每个步骤之后是否更改方向(当前是顺时针但代码是灵活的),还是仅在遇到占用像素时才更改方向。
      • 可以随机选择方向更改的顺序(而不是顺时针)。

它适用于最大4096x4096的所有尺寸。

完整的处理草图可以在这里找到:Tracer.zip

我将所有文件粘贴在下面的同一代码块中,只是为了节省空间(即使所有文件都在一个文件中,它仍然是有效的草图)。如果要使用预设之一,请更改gPreset分配中的索引。如果您在正在处理中运行此程序,则可以r在其运行时按生成新图像。

  • 更新1:优化代码以跟踪第一个未使用的颜色/像素,而不是搜索已知使用的像素;将2048x1024的生成时间从10-30分钟减少到大约15秒,将4096x4096的生成时间从1-3小时减少到大约1分钟。投递箱源和以下源已更新。
  • 更新2:修复了阻止生成4096x4096图像的错误。
final int BITS = 5; // Set to 5, 6, 7, or 8!

// Preset (String name, int colorBits, int maxCubePath, int maxCubeStep, int imageMode, int imageOpts)
final Preset[] PRESETS = new Preset[] {
  // 0
  new Preset("flowers",      BITS, 8*32*32, 2, ImageRect.MODE2, ImageRect.ALL_CW | ImageRect.CHANGE_DIRS),
  new Preset("diamonds",     BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS),
  new Preset("diamondtile",  BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS | ImageRect.WRAP),
  new Preset("shards",       BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ALL_CW | ImageRect.CHANGE_DIRS | ImageRect.SHUFFLE_DIRS),
  new Preset("bigdiamonds",  BITS,  100000, 6, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS),
  // 5
  new Preset("bigtile",      BITS,  100000, 6, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS | ImageRect.WRAP),
  new Preset("boxes",        BITS,   32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW),
  new Preset("giftwrap",     BITS,   32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.WRAP),
  new Preset("diagover",     BITS,   32*32, 2, ImageRect.MODE2, ImageRect.DIAG_CW),
  new Preset("boxfade",      BITS,   32*32, 2, ImageRect.MODE2, ImageRect.DIAG_CW | ImageRect.CHANGE_DIRS),
  // 10
  new Preset("randlimit",    BITS,     512, 2, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS),
  new Preset("ordlimit",     BITS,      64, 2, ImageRect.MODE1, 0),
  new Preset("randtile",     BITS,    2048, 3, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS | ImageRect.WRAP),
  new Preset("randnolimit",  BITS, 1000000, 1, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS),
  new Preset("ordnolimit",   BITS, 1000000, 1, ImageRect.MODE1, 0)
};


PGraphics gFrameBuffer;
Preset gPreset = PRESETS[2];

void generate () {
  ColorCube cube = gPreset.createCube();
  ImageRect image = gPreset.createImage();
  gFrameBuffer = createGraphics(gPreset.getWidth(), gPreset.getHeight(), JAVA2D);
  gFrameBuffer.noSmooth();
  gFrameBuffer.beginDraw();
  while (!cube.isExhausted())
    image.drawPath(cube.nextPath(), gFrameBuffer);
  gFrameBuffer.endDraw();
  if (gPreset.getName() != null)
    gFrameBuffer.save(gPreset.getName() + "_" + gPreset.getCubeSize() + ".png");
  //image.verifyExhausted();
  //cube.verifyExhausted();
}

void setup () {
  size(gPreset.getDisplayWidth(), gPreset.getDisplayHeight());
  noSmooth();
  generate();
}

void keyPressed () {
  if (key == 'r' || key == 'R')
    generate();
}

boolean autogen = false;
int autop = 0;
int autob = 5;

void draw () {
  if (autogen) {
    gPreset = new Preset(PRESETS[autop], autob);
    generate();
    if ((++ autop) >= PRESETS.length) {
      autop = 0;
      if ((++ autob) > 8)
        autogen = false;
    }
  }
  if (gPreset.isWrapped()) {
    int hw = width/2;
    int hh = height/2;
    image(gFrameBuffer, 0, 0, hw, hh);
    image(gFrameBuffer, hw, 0, hw, hh);
    image(gFrameBuffer, 0, hh, hw, hh);
    image(gFrameBuffer, hw, hh, hw, hh);
  } else {
    image(gFrameBuffer, 0, 0, width, height);
  }
}

static class ColorStep {
  final int r, g, b;
  ColorStep (int rr, int gg, int bb) { r=rr; g=gg; b=bb; }
}

class ColorCube {

  final boolean[] used;
  final int size; 
  final int maxPathLength;
  final ArrayList<ColorStep> allowedSteps = new ArrayList<ColorStep>();

  int remaining;
  int pathr = -1, pathg, pathb;
  int firstUnused = 0;

  ColorCube (int size, int maxPathLength, int maxStep) {
    this.used = new boolean[size*size*size];
    this.remaining = size * size * size;
    this.size = size;
    this.maxPathLength = maxPathLength;
    for (int r = -maxStep; r <= maxStep; ++ r)
      for (int g = -maxStep; g <= maxStep; ++ g)
        for (int b = -maxStep; b <= maxStep; ++ b)
          if (r != 0 && g != 0 && b != 0)
            allowedSteps.add(new ColorStep(r, g, b));
  }

  boolean isExhausted () {
    println(remaining);
    return remaining <= 0;
  }

  boolean isUsed (int r, int g, int b) {
    if (r < 0 || r >= size || g < 0 || g >= size || b < 0 || b >= size)
      return true;
    else
      return used[(r*size+g)*size+b];
  }

  void setUsed (int r, int g, int b) {
    used[(r*size+g)*size+b] = true;
  }

  int nextColor () {

    if (pathr == -1) { // Need to start a new path.

      // Limit to 50 attempts at random picks; things get tight near end.
      for (int n = 0; n < 50 && pathr == -1; ++ n) {
        int r = (int)random(size);
        int g = (int)random(size);
        int b = (int)random(size);
        if (!isUsed(r, g, b)) {
          pathr = r;
          pathg = g;
          pathb = b;
        }
      }
      // If we didn't find one randomly, just search for one.
      if (pathr == -1) {
        final int sizesq = size*size;
        final int sizemask = size - 1;
        for (int rgb = firstUnused; rgb < size*size*size; ++ rgb) {
          pathr = (rgb/sizesq)&sizemask;//(rgb >> 10) & 31;
          pathg = (rgb/size)&sizemask;//(rgb >> 5) & 31;
          pathb = rgb&sizemask;//rgb & 31;
          if (!used[rgb]) {
            firstUnused = rgb;
            break;
          }
        }
      }

      assert(pathr != -1);

    } else { // Continue moving on existing path.

      // Find valid next path steps.
      ArrayList<ColorStep> possibleSteps = new ArrayList<ColorStep>();
      for (ColorStep step:allowedSteps)
        if (!isUsed(pathr+step.r, pathg+step.g, pathb+step.b))
          possibleSteps.add(step);

      // If there are none end this path.
      if (possibleSteps.isEmpty()) {
        pathr = -1;
        return -1;
      }

      // Otherwise pick a random step and move there.
      ColorStep s = possibleSteps.get((int)random(possibleSteps.size()));
      pathr += s.r;
      pathg += s.g;
      pathb += s.b;

    }

    setUsed(pathr, pathg, pathb);  
    return 0x00FFFFFF & color(pathr * (256/size), pathg * (256/size), pathb * (256/size));

  } 

  ArrayList<Integer> nextPath () {

    ArrayList<Integer> path = new ArrayList<Integer>(); 
    int rgb;

    while ((rgb = nextColor()) != -1) {
      path.add(0xFF000000 | rgb);
      if (path.size() >= maxPathLength) {
        pathr = -1;
        break;
      }
    }

    remaining -= path.size();

    //assert(!path.isEmpty());
    if (path.isEmpty()) {
      println("ERROR: empty path.");
      verifyExhausted();
    }
    return path;

  }

  void verifyExhausted () {
    final int sizesq = size*size;
    final int sizemask = size - 1;
    for (int rgb = 0; rgb < size*size*size; ++ rgb) {
      if (!used[rgb]) {
        int r = (rgb/sizesq)&sizemask;
        int g = (rgb/size)&sizemask;
        int b = rgb&sizemask;
        println("UNUSED COLOR: " + r + " " + g + " " + b);
      }
    }
    if (remaining != 0)
      println("REMAINING COLOR COUNT IS OFF: " + remaining);
  }

}


static class ImageStep {
  final int x;
  final int y;
  ImageStep (int xx, int yy) { x=xx; y=yy; }
}

static int nmod (int a, int b) {
  return (a % b + b) % b;
}

class ImageRect {

  // for mode 1:
  //   one of ORTHO_CW, DIAG_CW, ALL_CW
  //   or'd with flags CHANGE_DIRS
  static final int ORTHO_CW = 0;
  static final int DIAG_CW = 1;
  static final int ALL_CW = 2;
  static final int DIR_MASK = 0x03;
  static final int CHANGE_DIRS = (1<<5);
  static final int SHUFFLE_DIRS = (1<<6);

  // for mode 2:
  static final int RANDOM_BLOCKS = (1<<0);

  // for both modes:
  static final int WRAP = (1<<16);

  static final int MODE1 = 0;
  static final int MODE2 = 1;

  final boolean[] used;
  final int width;
  final int height;
  final boolean changeDir;
  final int drawMode;
  final boolean randomBlocks;
  final boolean wrap;
  final ArrayList<ImageStep> allowedSteps = new ArrayList<ImageStep>();

  // X/Y are tracked instead of index to preserve original unoptimized mode 1 behavior
  // which does column-major searches instead of row-major.
  int firstUnusedX = 0;
  int firstUnusedY = 0;

  ImageRect (int width, int height, int drawMode, int drawOpts) {
    boolean myRandomBlocks = false, myChangeDir = false;
    this.used = new boolean[width*height];
    this.width = width;
    this.height = height;
    this.drawMode = drawMode;
    this.wrap = (drawOpts & WRAP) != 0;
    if (drawMode == MODE1) {
      myRandomBlocks = (drawOpts & RANDOM_BLOCKS) != 0;
    } else if (drawMode == MODE2) {
      myChangeDir = (drawOpts & CHANGE_DIRS) != 0;
      switch (drawOpts & DIR_MASK) {
      case ORTHO_CW:
        allowedSteps.add(new ImageStep(1, 0));
        allowedSteps.add(new ImageStep(0, -1));
        allowedSteps.add(new ImageStep(-1, 0));
        allowedSteps.add(new ImageStep(0, 1));
        break;
      case DIAG_CW:
        allowedSteps.add(new ImageStep(1, -1));
        allowedSteps.add(new ImageStep(-1, -1));
        allowedSteps.add(new ImageStep(-1, 1));
        allowedSteps.add(new ImageStep(1, 1));
        break;
      case ALL_CW:
        allowedSteps.add(new ImageStep(1, 0));
        allowedSteps.add(new ImageStep(1, -1));
        allowedSteps.add(new ImageStep(0, -1));
        allowedSteps.add(new ImageStep(-1, -1));
        allowedSteps.add(new ImageStep(-1, 0));
        allowedSteps.add(new ImageStep(-1, 1));
        allowedSteps.add(new ImageStep(0, 1));
        allowedSteps.add(new ImageStep(1, 1));
        break;
      }
      if ((drawOpts & SHUFFLE_DIRS) != 0)
        java.util.Collections.shuffle(allowedSteps);
    }
    this.randomBlocks = myRandomBlocks;
    this.changeDir = myChangeDir;
  }

  boolean isUsed (int x, int y) {
    if (wrap) {
      x = nmod(x, width);
      y = nmod(y, height);
    }
    if (x < 0 || x >= width || y < 0 || y >= height)
      return true;
    else
      return used[y*width+x];
  }

  boolean isUsed (int x, int y, ImageStep d) {
    return isUsed(x + d.x, y + d.y);
  }

  void setUsed (int x, int y) {
    if (wrap) {
      x = nmod(x, width);
      y = nmod(y, height);
    }
    used[y*width+x] = true;
  }

  boolean isBlockFree (int x, int y, int w, int h) {
    for (int yy = y; yy < y + h; ++ yy)
      for (int xx = x; xx < x + w; ++ xx)
        if (isUsed(xx, yy))
          return false;
    return true;
  }

  void drawPath (ArrayList<Integer> path, PGraphics buffer) {
    if (drawMode == MODE1)
      drawPath1(path, buffer);
    else if (drawMode == MODE2)
      drawPath2(path, buffer);
  }

  void drawPath1 (ArrayList<Integer> path, PGraphics buffer) {

    int w = (int)(sqrt(path.size()) + 0.5);
    if (w < 1) w = 1; else if (w > width) w = width;
    int h = (path.size() + w - 1) / w; 
    int x = -1, y = -1;

    int woff = wrap ? 0 : (1 - w);
    int hoff = wrap ? 0 : (1 - h);

    // Try up to 50 times to find a random location for block.
    if (randomBlocks) {
      for (int n = 0; n < 50 && x == -1; ++ n) {
        int xx = (int)random(width + woff);
        int yy = (int)random(height + hoff);
        if (isBlockFree(xx, yy, w, h)) {
          x = xx;
          y = yy;
        }
      }
    }

    // If random choice failed just search for one.
    int starty = firstUnusedY;
    for (int xx = firstUnusedX; xx < width + woff && x == -1; ++ xx) {
      for (int yy = starty; yy < height + hoff && x == -1; ++ yy) {
        if (isBlockFree(xx, yy, w, h)) {
          firstUnusedX = x = xx;
          firstUnusedY = y = yy;
        }  
      }
      starty = 0;
    }

    if (x != -1) {
      for (int xx = x, pathn = 0; xx < x + w && pathn < path.size(); ++ xx)
        for (int yy = y; yy < y + h && pathn < path.size(); ++ yy, ++ pathn) {
          buffer.set(nmod(xx, width), nmod(yy, height), path.get(pathn));
          setUsed(xx, yy);
        }
    } else {
      for (int yy = 0, pathn = 0; yy < height && pathn < path.size(); ++ yy)
        for (int xx = 0; xx < width && pathn < path.size(); ++ xx)
          if (!isUsed(xx, yy)) {
            buffer.set(nmod(xx, width), nmod(yy, height), path.get(pathn));
            setUsed(xx, yy);
            ++ pathn;
          }
    }

  }

  void drawPath2 (ArrayList<Integer> path, PGraphics buffer) {

    int pathn = 0;

    while (pathn < path.size()) {

      int x = -1, y = -1;

      // pick a random location in the image (try up to 100 times before falling back on search)

      for (int n = 0; n < 100 && x == -1; ++ n) {
        int xx = (int)random(width);
        int yy = (int)random(height);
        if (!isUsed(xx, yy)) {
          x = xx;
          y = yy;
        }
      }  

      // original:
      //for (int yy = 0; yy < height && x == -1; ++ yy)
      //  for (int xx = 0; xx < width && x == -1; ++ xx)
      //    if (!isUsed(xx, yy)) {
      //      x = xx;
      //      y = yy;
      //    }
      // optimized:
      if (x == -1) {
        for (int n = firstUnusedY * width + firstUnusedX; n < used.length; ++ n) {
          if (!used[n]) {
            firstUnusedX = x = (n % width);
            firstUnusedY = y = (n / width);
            break;
          }     
        }
      }

      // start drawing

      int dir = 0;

      while (pathn < path.size()) {

        buffer.set(nmod(x, width), nmod(y, height), path.get(pathn ++));
        setUsed(x, y);

        int diro;
        for (diro = 0; diro < allowedSteps.size(); ++ diro) {
          int diri = (dir + diro) % allowedSteps.size();
          ImageStep step = allowedSteps.get(diri);
          if (!isUsed(x, y, step)) {
            dir = diri;
            x += step.x;
            y += step.y;
            break;
          }
        }

        if (diro == allowedSteps.size())
          break;

        if (changeDir) 
          ++ dir;

      }    

    }

  }

  void verifyExhausted () {
    for (int n = 0; n < used.length; ++ n)
      if (!used[n])
        println("UNUSED IMAGE PIXEL: " + (n%width) + " " + (n/width));
  }

}


class Preset {

  final String name;
  final int cubeSize;
  final int maxCubePath;
  final int maxCubeStep;
  final int imageWidth;
  final int imageHeight;
  final int imageMode;
  final int imageOpts;
  final int displayScale;

  Preset (Preset p, int colorBits) {
    this(p.name, colorBits, p.maxCubePath, p.maxCubeStep, p.imageMode, p.imageOpts);
  }

  Preset (String name, int colorBits, int maxCubePath, int maxCubeStep, int imageMode, int imageOpts) {
    final int csize[] = new int[]{ 32, 64, 128, 256 };
    final int iwidth[] = new int[]{ 256, 512, 2048, 4096 };
    final int iheight[] = new int[]{ 128, 512, 1024, 4096 };
    final int dscale[] = new int[]{ 2, 1, 1, 1 };
    this.name = name; 
    this.cubeSize = csize[colorBits - 5];
    this.maxCubePath = maxCubePath;
    this.maxCubeStep = maxCubeStep;
    this.imageWidth = iwidth[colorBits - 5];
    this.imageHeight = iheight[colorBits - 5];
    this.imageMode = imageMode;
    this.imageOpts = imageOpts;
    this.displayScale = dscale[colorBits - 5];
  }

  ColorCube createCube () {
    return new ColorCube(cubeSize, maxCubePath, maxCubeStep);
  }

  ImageRect createImage () {
    return new ImageRect(imageWidth, imageHeight, imageMode, imageOpts);
  }

  int getWidth () {
    return imageWidth;
  }

  int getHeight () {
    return imageHeight;
  }

  int getDisplayWidth () {
    return imageWidth * displayScale * (isWrapped() ? 2 : 1);
  }

  int getDisplayHeight () {
    return imageHeight * displayScale * (isWrapped() ? 2 : 1);
  }

  String getName () {
    return name;
  }

  int getCubeSize () {
    return cubeSize;
  }

  boolean isWrapped () {
    return (imageOpts & ImageRect.WRAP) != 0;
  }

}

这是我喜欢的全套256x128图像:

模式1:

我最喜欢的原始集(max_path_length = 512,path_step = 2,随机,显示2x,链接256x128):

在此处输入图片说明

其他(左两个有序,右两个随机,前两个路径长度受限制,下两个路径不受限制):

限制 randlimit 奥数极限 randnolimit

这一个可以平铺:

有钱人

模式2:

钻石 花卉 淡入淡出 诊断 大钻石 盒子2 分片

这些可以平铺:

大块头 钻石 礼品包装

512x512选择:

花木钻石,我最喜欢模式2;您可以在这一章中看到路径如何绕过现有对象:

在此处输入图片说明

更大的路径步长和最大路径长度,可平铺:

在此处输入图片说明

随机模式1,可平铺:

在此处输入图片说明

更多选择:

在此处输入图片说明 在此处输入图片说明 在此处输入图片说明

所有512x512效果图都可以在保管箱文件夹(* _64.png)中找到。

2048x1024和4096x4096:

这些图片太大,无法嵌入,我发现的所有图片主机都将其降至1600x1200。我目前正在渲染4096x4096的图像集,因此不久将有更多可用。无需在此处包含所有链接,只需在dropbox文件夹中检出它们即可(* _128.png和* _256.png,请注意:对于dropbox预览器,4096x4096太大了,只需单击“下载”)。不过,这是我的一些最爱:

2048x1024个大图素钻石(与我在这篇博文开头链接的钻石相同)

2048x1024钻石(我喜欢这个!),按比例缩小:

在此处输入图片说明

4096x4096个大图素钻石(最后!在Dropbox链接中单击“下载”;对于其预览器而言太大),并按比例缩小:

4096x4096大花木钻石

4096x4096随机模式1在此处输入图片说明

4096x4096另一个很酷的一个

更新:2048x1024预设图像集已完成,并在保管箱中。4096x4096设置应在一个小时内完成。

有很多不错的东西,我很难挑选要发布的东西,所以请查看文件夹链接!


6
它使我想起某些矿物的特写视图。
Morwenn 2014年

3
这不是比赛的一部分,但我认为这很酷;我对Photoshop中的随机模式1图片之一应用了高斯模糊和自动对比度增强功能,这使它成为了一种不错的桌面背景。
杰森·C

2
哇,这些都是很酷的图片!
sevenseacat 2014年

2
让我想起了Gustav Klimt纹理。

2
您知道可以在Dropbox中热链接图像吗?只需复制下载网址,删除dl=1和,token_hash=<something>然后像这样链接到您的图片即可:[![Alt text of my small preview image](https://i.stack.imgur.com/smallpreview.png)](https://dl.dropbox.com/linktoyourfullsiz‌​eimage.png)。另一个提示:您可以压缩图像(使用TruePNG下载)会得到很好的效果)。我能够在此图像上节省文件大小的28.1%。
user2428118 2014年

219

PIL的 Python

这是基于一个牛顿分形,具体为ž→Z 5 - 1。由于有五个根,因此有五个收敛点,因此基于色相,可用的色彩空间分为五个区域。首先按照到达其收敛点所需的迭代次数对各个点进行排序,然后再按到该点的距离进行排序,并为较早的值分配更明亮的颜色。

更新: 4096x4096大型渲染,托管在allrgb.com上

原始的(33.7 MB)

非常中心(实际大小)的特写:

使用这些值的不同优势:

xstart = 0
ystart = 0

xd = 1 / dim[0]
yd = 1 / dim[1]

原始的(32.2 MB)

另一个使用这些:

xstart = 0.5
ystart = 0.5

xd = 0.001 / dim[0]
yd = 0.001 / dim[1]

原始的(27.2 MB)


动画

根据要求,我已经编译了一个缩放动画。

焦点:(0.50051-0.50051
缩放系数:2 1/5

焦点是一个有点奇怪的值,因为我不想放大黑点。选择缩放系数,使其每5帧翻倍。

一个32x32预告片:

可以在此处看到256x256版本:
http ://www.pictureshack.org/images/66172_frac.gif(5.4MB)

可能有一些点在数学上“放大到自身”,这将允许无限的动画。如果可以识别任何内容,请在此处添加。


资源

from __future__ import division
from PIL import Image, ImageDraw
from cmath import phase
from sys import maxint

dim  = (4096, 4096)
bits = 8

def RGBtoHSV(R, G, B):
  R /= 255
  G /= 255
  B /= 255

  cmin = min(R, G, B)
  cmax = max(R, G, B)
  dmax = cmax - cmin

  V = cmax

  if dmax == 0:
    H = 0
    S = 0

  else:
    S = dmax/cmax

    dR = ((cmax - R)/6 + dmax/2)/dmax
    dG = ((cmax - G)/6 + dmax/2)/dmax
    dB = ((cmax - B)/6 + dmax/2)/dmax

    if   R == cmax: H = (dB - dG)%1
    elif G == cmax: H = (1/3 + dR - dB)%1
    elif B == cmax: H = (2/3 + dG - dR)%1

  return (H, S, V)

cmax = (1<<bits)-1
cfac = 255/cmax

img  = Image.new('RGB', dim)
draw = ImageDraw.Draw(img)

xstart = -2
ystart = -2

xd = 4 / dim[0]
yd = 4 / dim[1]

tol = 1e-12

a = [[], [], [], [], []]

for x in range(dim[0]):
  print x, "\r",
  for y in range(dim[1]):
    z = d = complex(xstart + x*xd, ystart + y*yd)
    c = 0
    l = 1
    while abs(l-z) > tol and abs(z) > tol:
      l = z
      z -= (z**5-1)/(5*z**4)
      c += 1
    if z == 0: c = maxint
    p = int(phase(z))

    a[p] += (c,abs(d-z), x, y),

for i in range(5):
  a[i].sort(reverse = False)

pnum = [len(a[i]) for i in range(5)]
ptot = dim[0]*dim[1]

bounds = []
lbound = 0
for i in range(4):
  nbound = lbound + pnum[i]/ptot
  bounds += nbound,
  lbound = nbound

t = [[], [], [], [], []]
for i in range(ptot-1, -1, -1):
  r = (i>>bits*2)*cfac
  g = (cmax&i>>bits)*cfac
  b = (cmax&i)*cfac
  (h, s, v) = RGBtoHSV(r, g, b)
  h = (h+0.1)%1
  if   h < bounds[0] and len(t[0]) < pnum[0]: p=0
  elif h < bounds[1] and len(t[1]) < pnum[1]: p=1
  elif h < bounds[2] and len(t[2]) < pnum[2]: p=2
  elif h < bounds[3] and len(t[3]) < pnum[3]: p=3
  else: p=4
  t[p] += (int(r), int(g), int(b)),

for i in range(5):
  t[i].sort(key = lambda c: c[0]*2126 + c[1]*7152 + c[2]*722, reverse = True)

r = [0, 0, 0, 0, 0]
for p in range(5):
  for c,d,x,y in a[p]:
    draw.point((x,y), t[p][r[p]])
    r[p] += 1

img.save("out.png")

6
最后一个分形:)爱那些。另外,144度的绿色是我最喜欢的颜色(与120度的纯绿色相反,这很无聊)。
Mark Jeronimus

2
我不知道,实际上我更喜欢AllRGB版本。使用整个亮度空间的需求很好地强调了渐变。
Ilmari Karonen 2014年

2
+1最后一些好的分形!最后一个是我个人的最爱。您应该放大视频!(@Quincunx:也见到您;第一天就获得了我的投票!)
Jason C

1
@JasonC我添加了动画;)
primo

2
@primo我知道我来晚了,但是我只是想说这些图像很壮观。
Ashwin Gupta

130

我是从用户fejesjoco的算法中得到这个想法的,并且想玩一点,所以我开始从头开始编写自己的算法。

我之所以这样发布,是因为我认为,如果我能做得比最优秀的人更好的*,我认为这一挑战还没有完成。相比之下,allRGB上有一些令人惊叹的设计,我认为它们超出了此处达到的水平,我不知道他们是如何做到的。

*)仍将由投票决定

该算法:

  1. 从(少量)种子开始,颜色尽可能接近黑色。
  2. 保留所有未访问且与访问点8连接的像素的列表。
  3. 从该列表中选择一个随机点
  4. 计算所有计算像素的平均颜色[使用高斯核在9x9正方形中编辑...] 8位像素连接(这就是它看起来如此光滑的原因)。如果找不到,则取黑色。
  5. 在围绕该颜色的3x3x3立方体中,搜索未使用的颜色。
    • 发现多种颜色时,请选择最深的一种。
    • 当发现许多同样深的颜色时,从其中随机选择一种。
    • 如果找不到任何内容,请将搜索范围更新为5x5x5、7x7x7等。从5重复。
  6. 绘制像素,更新列表并从3开始重复

我还根据对选定像素有多少访问过的邻居进行计数,尝试了选择候选点的不同概率,但是这样做只会减慢算法的速度,而不会使其更漂亮。当前算法不使用概率,而是从列表中选择一个随机点。这会导致许多邻居的点快速填充,这使其只是一个带有模糊边缘的不断增长的实心球。如果缝隙将在以后的过程中被填充,这还可以防止相邻颜色不可用。

图像是环形的。

爪哇

下载:com.digitalmodular

package demos;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.util.Arrays;

import com.digitalmodular.utilities.RandomFunctions;
import com.digitalmodular.utilities.gui.ImageFunctions;
import com.digitalmodular.utilities.swing.window.PixelImage;
import com.digitalmodular.utilities.swing.window.PixelWindow;

/**
 * @author jeronimus
 */
// Date 2014-02-28
public class AllColorDiffusion extends PixelWindow implements Runnable {
    private static final int    CHANNEL_BITS    = 7;

    public static void main(String[] args) {
        int bits = CHANNEL_BITS * 3;
        int heightBits = bits / 2;
        int widthBits = bits - heightBits;

        new AllColorDiffusion(CHANNEL_BITS, 1 << widthBits, 1 << heightBits);
    }

    private final int           width;
    private final int           height;
    private final int           channelBits;
    private final int           channelSize;

    private PixelImage          img;
    private javax.swing.Timer   timer;

    private boolean[]           colorCube;
    private long[]              foundColors;
    private boolean[]           queued;
    private int[]               queue;
    private int                 queuePointer    = 0;
    private int                 remaining;

    public AllColorDiffusion(int channelBits, int width, int height) {
        super(1024, 1024 * height / width);

        RandomFunctions.RND.setSeed(0);

        this.width = width;
        this.height = height;
        this.channelBits = channelBits;
        channelSize = 1 << channelBits;
    }

    @Override
    public void initialized() {
        img = new PixelImage(width, height);

        colorCube = new boolean[channelSize * channelSize * channelSize];
        foundColors = new long[channelSize * channelSize * channelSize];
        queued = new boolean[width * height];
        queue = new int[width * height];
        for (int i = 0; i < queue.length; i++)
            queue[i] = i;

        new Thread(this).start();
    }

    @Override
    public void resized() {}

    @Override
    public void run() {
        timer = new javax.swing.Timer(500, new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent e) {
                draw();
            }
        });

        while (true) {
            img.clear(0);
            init();
            render();
        }

        // System.exit(0);
    }

    private void init() {
        RandomFunctions.RND.setSeed(0);

        Arrays.fill(colorCube, false);
        Arrays.fill(queued, false);
        remaining = width * height;

        // Initial seeds (need to be the darkest colors, because of the darkest
        // neighbor color search algorithm.)
        setPixel(width / 2 + height / 2 * width, 0);
        remaining--;
    }

    private void render() {
        timer.start();

        for (; remaining > 0; remaining--) {
            int point = findPoint();
            int color = findColor(point);
            setPixel(point, color);
        }

        timer.stop();
        draw();

        try {
            ImageFunctions.savePNG(System.currentTimeMillis() + ".png", img.image);
        }
        catch (IOException e1) {
            e1.printStackTrace();
        }
    }

    void draw() {
        g.drawImage(img.image, 0, 0, getWidth(), getHeight(), 0, 0, width, height, null);
        repaintNow();
    }

    private int findPoint() {
        while (true) {
            // Time to reshuffle?
            if (queuePointer == 0) {
                for (int i = queue.length - 1; i > 0; i--) {
                    int j = RandomFunctions.RND.nextInt(i);
                    int temp = queue[i];
                    queue[i] = queue[j];
                    queue[j] = temp;
                    queuePointer = queue.length;
                }
            }

            if (queued[queue[--queuePointer]])
                return queue[queuePointer];
        }
    }

    private int findColor(int point) {
        int x = point & width - 1;
        int y = point / width;

        // Calculate the reference color as the average of all 8-connected
        // colors.
        int r = 0;
        int g = 0;
        int b = 0;
        int n = 0;
        for (int j = -1; j <= 1; j++) {
            for (int i = -1; i <= 1; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                if (img.pixels[point] != 0) {
                    int pixel = img.pixels[point];

                    r += pixel >> 24 - channelBits & channelSize - 1;
                    g += pixel >> 16 - channelBits & channelSize - 1;
                    b += pixel >> 8 - channelBits & channelSize - 1;
                    n++;
                }
            }
        }
        r /= n;
        g /= n;
        b /= n;

        // Find a color that is preferably darker but not too far from the
        // original. This algorithm might fail to take some darker colors at the
        // start, and when the image is almost done the size will become really
        // huge because only bright reference pixels are being searched for.
        // This happens with a probability of 50% with 6 channelBits, and more
        // with higher channelBits values.
        //
        // Try incrementally larger distances from reference color.
        for (int size = 2; size <= channelSize; size *= 2) {
            n = 0;

            // Find all colors in a neighborhood from the reference color (-1 if
            // already taken).
            for (int ri = r - size; ri <= r + size; ri++) {
                if (ri < 0 || ri >= channelSize)
                    continue;
                int plane = ri * channelSize * channelSize;
                int dr = Math.abs(ri - r);
                for (int gi = g - size; gi <= g + size; gi++) {
                    if (gi < 0 || gi >= channelSize)
                        continue;
                    int slice = plane + gi * channelSize;
                    int drg = Math.max(dr, Math.abs(gi - g));
                    int mrg = Math.min(ri, gi);
                    for (int bi = b - size; bi <= b + size; bi++) {
                        if (bi < 0 || bi >= channelSize)
                            continue;
                        if (Math.max(drg, Math.abs(bi - b)) > size)
                            continue;
                        if (!colorCube[slice + bi])
                            foundColors[n++] = Math.min(mrg, bi) << channelBits * 3 | slice + bi;
                    }
                }
            }

            if (n > 0) {
                // Sort by distance from origin.
                Arrays.sort(foundColors, 0, n);

                // Find a random color amongst all colors equally distant from
                // the origin.
                int lowest = (int)(foundColors[0] >> channelBits * 3);
                for (int i = 1; i < n; i++) {
                    if (foundColors[i] >> channelBits * 3 > lowest) {
                        n = i;
                        break;
                    }
                }

                int nextInt = RandomFunctions.RND.nextInt(n);
                return (int)(foundColors[nextInt] & (1 << channelBits * 3) - 1);
            }
        }

        return -1;
    }

    private void setPixel(int point, int color) {
        int b = color & channelSize - 1;
        int g = color >> channelBits & channelSize - 1;
        int r = color >> channelBits * 2 & channelSize - 1;
        img.pixels[point] = 0xFF000000 | ((r << 8 | g) << 8 | b) << 8 - channelBits;

        colorCube[color] = true;

        int x = point & width - 1;
        int y = point / width;
        queued[point] = false;
        for (int j = -1; j <= 1; j++) {
            for (int i = -1; i <= 1; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                if (img.pixels[point] == 0) {
                    queued[point] = true;
                }
            }
        }
    }
}
  • 512×512
  • 原1种子
  • 1秒

在此处输入图片说明

  • 2048×1024
  • 略微平铺到1920×1080桌面
  • 30秒
  • 在Photoshop中为负片

在此处输入图片说明

  • 2048×1024
  • 8粒
  • 27秒

在此处输入图片说明

  • 512×512
  • 40个随机种子
  • 6秒

在此处输入图片说明

  • 4096×4096
  • 1粒种子
  • 条纹变得更加锐利(因为看起来好像可以将鱼切成生鱼片)
  • 看起来好像在20分钟内完成了,但是...由于某种原因未能完成,所以现在我在一夜之间并行运行7个实例。

[见下文]

[编辑]
**我发现我选择像素的方法根本不是完全随机的。我以为,对搜索空间进行随机排列会比随机产生随机且速度更快(因为不会偶然选择一个点两次。但是以某种方式,用真实随机替换它,我的图像会不断出现更多的噪点。

[删除版本2代码,因为我超过了30,000个字符限制]

在此处输入图片说明

  • 将初始搜索多维数据集增加到5x5x5

在此处输入图片说明

  • 甚至更大,9x9x9

在此处输入图片说明

  • 事故1.禁用排列,因此搜索空间始终是线性的。

在此处输入图片说明

  • 事故2。使用fifo队列尝试了一种新的搜索技术。仍然必须对此进行分析,但我认为值得分享。

在此处输入图片说明

  • 始终从中心选择X个未使用的像素
  • X从0到8192的范围为256

图片无法上传:“糟糕!发生了什么坏事!不是你,是我们。这是我们的错。” 图片对于imgur来说太大了。在别处尝试...

在此处输入图片说明

我在digitalmodular库中发现了一个调度程序包,可以确定像素的处理顺序(而不是扩散)。

package demos;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.util.Arrays;

import com.digitalmodular.utilities.RandomFunctions;
import com.digitalmodular.utilities.gui.ImageFunctions;
import com.digitalmodular.utilities.gui.schedulers.ScheduledPoint;
import com.digitalmodular.utilities.gui.schedulers.Scheduler;
import com.digitalmodular.utilities.gui.schedulers.XorScheduler;
import com.digitalmodular.utilities.swing.window.PixelImage;
import com.digitalmodular.utilities.swing.window.PixelWindow;

/**
 * @author jeronimus
 */
// Date 2014-02-28
public class AllColorDiffusion3 extends PixelWindow implements Runnable {
    private static final int    CHANNEL_BITS    = 7;

    public static void main(String[] args) {

        int bits = CHANNEL_BITS * 3;
        int heightBits = bits / 2;
        int widthBits = bits - heightBits;

        new AllColorDiffusion3(CHANNEL_BITS, 1 << widthBits, 1 << heightBits);
    }

    private final int           width;
    private final int           height;
    private final int           channelBits;
    private final int           channelSize;

    private PixelImage          img;
    private javax.swing.Timer   timer;
    private Scheduler           scheduler   = new XorScheduler();

    private boolean[]           colorCube;
    private long[]              foundColors;

    public AllColorDiffusion3(int channelBits, int width, int height) {
        super(1024, 1024 * height / width);

        this.width = width;
        this.height = height;
        this.channelBits = channelBits;
        channelSize = 1 << channelBits;
    }

    @Override
    public void initialized() {
        img = new PixelImage(width, height);

        colorCube = new boolean[channelSize * channelSize * channelSize];
        foundColors = new long[channelSize * channelSize * channelSize];

        new Thread(this).start();
    }

    @Override
    public void resized() {}

    @Override
    public void run() {
        timer = new javax.swing.Timer(500, new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent e) {
                draw();
            }
        });

        // for (double d = 0.2; d < 200; d *= 1.2)
        {
            img.clear(0);
            init(0);
            render();
        }

        // System.exit(0);
    }

    private void init(double param) {
        // RandomFunctions.RND.setSeed(0);

        Arrays.fill(colorCube, false);

        // scheduler = new SpiralScheduler(param);
        scheduler.init(width, height);
    }

    private void render() {
        timer.start();

        while (scheduler.getProgress() != 1) {
            int point = findPoint();
            int color = findColor(point);
            setPixel(point, color);
        }

        timer.stop();
        draw();

        try {
            ImageFunctions.savePNG(System.currentTimeMillis() + ".png", img.image);
        }
        catch (IOException e1) {
            e1.printStackTrace();
        }
    }

    void draw() {
        g.drawImage(img.image, 0, 0, getWidth(), getHeight(), 0, 0, width, height, null);
        repaintNow();
        setTitle(Double.toString(scheduler.getProgress()));
    }

    private int findPoint() {
        ScheduledPoint p = scheduler.poll();

        // try {
        // Thread.sleep(1);
        // }
        // catch (InterruptedException e) {
        // }

        return p.x + width * p.y;
    }

    private int findColor(int point) {
        // int z = 0;
        // for (int i = 0; i < colorCube.length; i++)
        // if (!colorCube[i])
        // System.out.println(i);

        int x = point & width - 1;
        int y = point / width;

        // Calculate the reference color as the average of all 8-connected
        // colors.
        int r = 0;
        int g = 0;
        int b = 0;
        int n = 0;
        for (int j = -3; j <= 3; j++) {
            for (int i = -3; i <= 3; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                int f = (int)Math.round(10000 * Math.exp((i * i + j * j) * -0.4));
                if (img.pixels[point] != 0) {
                    int pixel = img.pixels[point];

                    r += (pixel >> 24 - channelBits & channelSize - 1) * f;
                    g += (pixel >> 16 - channelBits & channelSize - 1) * f;
                    b += (pixel >> 8 - channelBits & channelSize - 1) * f;
                    n += f;
                }
                // System.out.print(f + "\t");
            }
            // System.out.println();
        }
        if (n > 0) {
            r /= n;
            g /= n;
            b /= n;
        }

        // Find a color that is preferably darker but not too far from the
        // original. This algorithm might fail to take some darker colors at the
        // start, and when the image is almost done the size will become really
        // huge because only bright reference pixels are being searched for.
        // This happens with a probability of 50% with 6 channelBits, and more
        // with higher channelBits values.
        //
        // Try incrementally larger distances from reference color.
        for (int size = 2; size <= channelSize; size *= 2) {
            n = 0;

            // Find all colors in a neighborhood from the reference color (-1 if
            // already taken).
            for (int ri = r - size; ri <= r + size; ri++) {
                if (ri < 0 || ri >= channelSize)
                    continue;
                int plane = ri * channelSize * channelSize;
                int dr = Math.abs(ri - r);
                for (int gi = g - size; gi <= g + size; gi++) {
                    if (gi < 0 || gi >= channelSize)
                        continue;
                    int slice = plane + gi * channelSize;
                    int drg = Math.max(dr, Math.abs(gi - g));
                    // int mrg = Math.min(ri, gi);
                    long srg = ri * 299L + gi * 436L;
                    for (int bi = b - size; bi <= b + size; bi++) {
                        if (bi < 0 || bi >= channelSize)
                            continue;
                        if (Math.max(drg, Math.abs(bi - b)) > size)
                            continue;
                        if (!colorCube[slice + bi])
                            // foundColors[n++] = Math.min(mrg, bi) <<
                            // channelBits * 3 | slice + bi;
                            foundColors[n++] = srg + bi * 114L << channelBits * 3 | slice + bi;
                    }
                }
            }

            if (n > 0) {
                // Sort by distance from origin.
                Arrays.sort(foundColors, 0, n);

                // Find a random color amongst all colors equally distant from
                // the origin.
                int lowest = (int)(foundColors[0] >> channelBits * 3);
                for (int i = 1; i < n; i++) {
                    if (foundColors[i] >> channelBits * 3 > lowest) {
                        n = i;
                        break;
                    }
                }

                int nextInt = RandomFunctions.RND.nextInt(n);
                return (int)(foundColors[nextInt] & (1 << channelBits * 3) - 1);
            }
        }

        return -1;
    }

    private void setPixel(int point, int color) {
        int b = color & channelSize - 1;
        int g = color >> channelBits & channelSize - 1;
        int r = color >> channelBits * 2 & channelSize - 1;
        img.pixels[point] = 0xFF000000 | ((r << 8 | g) << 8 | b) << 8 - channelBits;

        colorCube[color] = true;
    }
}
  • 角形(8)

在此处输入图片说明

  • 角铁(64)

在此处输入图片说明

  • 显像管

在此处输入图片说明

  • 颤动

在此处输入图片说明

  • 花(5,X),其中X范围从0.5到20,步长为X = X×1.2

在此处输入图片说明

  • 模数

在此处输入图片说明

  • 毕达哥拉斯

在此处输入图片说明

  • 径向的

在此处输入图片说明

  • 随机

在此处输入图片说明

  • 扫描线

在此处输入图片说明

  • 螺旋(X),其中X范围为X到X×1.2,范围为0.1到200
  • 您可以看到它介于Radial到Angular(5)之间

在此处输入图片说明

  • 分裂

在此处输入图片说明

  • 方形螺旋

在此处输入图片说明

  • 异或

在此处输入图片说明

新的眼食

  • 颜色选择的影响 max(r, g, b)

在此处输入图片说明

  • 颜色选择的影响 min(r, g, b)
  • 请注意,此功能/功能与上述功能/功能完全相同,只是颜色不同!(相同的随机种子)

在此处输入图片说明

  • 颜色选择的影响 max(r, min(g, b))

在此处输入图片说明

  • 通过灰度值选择颜色的效果 299*r + 436*g + 114*b

在此处输入图片说明

  • 颜色选择的影响 1*r + 10*g + 100*b

在此处输入图片说明

  • 颜色选择的影响 100*r + 10*g + 1*b

在此处输入图片说明

  • 299*r + 436*g + 114*b32位整数溢出时发生的意外事故

在此处输入图片说明 在此处输入图片说明 在此处输入图片说明

  • 变体3,具有灰度值和Radial Scheduler

在此处输入图片说明

  • 我忘记了我是怎么创建的

在此处输入图片说明

  • CRT Scheduler也有一个令人讨厌的整数溢出错误(更新了ZIP),这导致它以512×512的图像而不是居中地开始一半。这是应该的样子:

在此处输入图片说明 在此处输入图片说明

  • InverseSpiralScheduler(64) (新)

在此处输入图片说明

  • 另一个异或

在此处输入图片说明

  • 错误修正后的第一个成功的4096渲染。我认为这是版本3 SpiralScheduler(1)或类似的东西

在此处输入图片说明 (50MB !!)

  • 版本1 4096,但我不小心将颜色标准留在了 max()

在此处输入图片说明 (50MB !!)

  • 4096,现在有 min()
  • 请注意,此功能/功能与上述功能/功能完全相同,只是颜色不同!(相同的随机种子)
  • 时间:忘记记录了,但是文件时间戳是前一张图像之后的3分钟

在此处输入图片说明 (50MB !!)


凉。您的最终图像类似于我一直在讲的第二个想法,尽管我感觉我的外观不会那么好。顺便说一句,在allrgb.com/diffusive上也有一个很酷的地方
杰森C

它原本只是一个预告片,但由于担心被举报,所以我对其进行了编辑,这显然是发生了:)
Mark Jeronimus

2
甚至事故看起来也不错:)。彩色立方体似乎是一个很好的主意,与我的相比,您的渲染速度非常出色。allrgb上的某些设计确实有很好的描述,例如allrgb.com/dla。我希望我有更多的时间进行更多的实验,有太多的可能性……
fejesjoco 2014年

我差点忘了,我只是上传了一些大型渲染图。我认为其中之一,彩虹烟雾/墨迹很浓,比allrgb :)上的任何东西都要好。我同意,其他人并没有那么令人惊叹,这就是为什么我制作了一个视频以使他们做出更多贡献的原因:)。
fejesjoco 2014年

添加了源代码和Digisoft库的链接,因此您实际上可以编译我的代码
Mark Jeronimus 2014年

72

带有Qt的C ++

我看到你的版本:

在此处输入图片说明

对颜色使用正态分布:

在此处输入图片说明 在此处输入图片说明

或首先按红色/色调排序(偏差较小):

在此处输入图片说明 在此处输入图片说明

或其他一些发行版本:

在此处输入图片说明 在此处输入图片说明

柯西分布(HSL /红色):

在此处输入图片说明 在此处输入图片说明

按亮度(hsl)排序的cols:

在此处输入图片说明

更新的源代码-产生第6张图片:

int main() {
    const int c = 256*128;
    std::vector<QRgb> data(c);
    QImage image(256, 128, QImage::Format_RGB32);

    std::default_random_engine gen;
    std::normal_distribution<float> dx(0, 2);
    std::normal_distribution<float> dy(0, 1);

    for(int i = 0; i < c; ++i) {
        data[i] = qRgb(i << 3 & 0xF8, i >> 2 & 0xF8, i >> 7 & 0xF8);
    }
    std::sort(data.begin(), data.end(), [] (QRgb a, QRgb b) -> bool {
        return QColor(a).hsvHue() < QColor(b).hsvHue();
    });

    int i = 0;
    while(true) {
        if(i % 10 == 0) { //no need on every iteration
            dx = std::normal_distribution<float>(0, 8 + 3 * i/1000.f);
            dy = std::normal_distribution<float>(0, 4 + 3 * i/1000.f);
        }
        int x = (int) dx(gen);
        int y = (int) dy(gen);
        if(x < 256 && x >= 0 && y >= 0 && y < 128) {
            if(!image.pixel(x, y)) {
                image.setPixel(x, y, data[i]);
                if(i % (c/100) == 1) {
                    std::cout << (int) (100.f*i/c) << "%\n";
                }
                if(++i == c) break;
            }
        }
    }
    image.save("tmp.png");
    return 0;
}

做得很好。但是,不会image.pixel(x, y) == 0失败并覆盖第一个放置的像素吗?
Mark Jeronimus 2014年

@ ZOM-B:可以,但随后的最后一个将是黑色的,所以它的规则之内..
贾-C

虽然没有规则问题。我只是以为您可能会错过它。从1开始也可以计数。我爱你的其他人!
Mark Jeronimus 2014年

@ Zom-B:谢谢,我可能还要添加一些,我有点喜欢:P
Jaa-c

一个有两个圆圈的圆圈和一个在其下方的圆圈看起来有点像猴子的脸。
詹森C

64

在Java中:

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.LinkedList;

import javax.imageio.ImageIO;

public class ImgColor {

    private static class Point {
        public int x, y;
        public color c;

        public Point(int x, int y, color c) {
            this.x = x;
            this.y = y;
            this.c = c;
        }
    }

    private static class color {
        char r, g, b;

        public color(int i, int j, int k) {
            r = (char) i;
            g = (char) j;
            b = (char) k;
        }
    }

    public static LinkedList<Point> listFromImg(String path) {
        LinkedList<Point> ret = new LinkedList<>();
        BufferedImage bi = null;
        try {
            bi = ImageIO.read(new File(path));
        } catch (IOException e) {
            e.printStackTrace();
        }
        for (int x = 0; x < 4096; x++) {
            for (int y = 0; y < 4096; y++) {
                Color c = new Color(bi.getRGB(x, y));
                ret.add(new Point(x, y, new color(c.getRed(), c.getGreen(), c.getBlue())));
            }
        }
        Collections.shuffle(ret);
        return ret;
    }

    public static LinkedList<color> allColors() {
        LinkedList<color> colors = new LinkedList<>();
        for (int r = 0; r < 256; r++) {
            for (int g = 0; g < 256; g++) {
                for (int b = 0; b < 256; b++) {
                    colors.add(new color(r, g, b));
                }
            }
        }
        Collections.shuffle(colors);
        return colors;
    }

    public static Double cDelta(color a, color b) {
        return Math.pow(a.r - b.r, 2) + Math.pow(a.g - b.g, 2) + Math.pow(a.b - b.b, 2);
    }

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        LinkedList<Point> orig = listFromImg(args[0]);
        LinkedList<color> toDo = allColors();

        Point p = null;
        while (orig.size() > 0 && (p = orig.pop()) != null) {
            color chosen = toDo.pop();
            for (int i = 0; i < Math.min(100, toDo.size()); i++) {
                color c = toDo.pop();
                if (cDelta(c, p.c) < cDelta(chosen, p.c)) {
                    toDo.add(chosen);
                    chosen = c;
                } else {
                    toDo.add(c);
                }
            }
            img.setRGB(p.x, p.y, new Color(chosen.r, chosen.g, chosen.b).getRGB());
        }
        try {
            ImageIO.write(img, "PNG", new File(args[1]));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

和一个输入图像:

狐猴

我生成这样的东西:

酸性狐猴

此处未压缩的版本:https : //www.mediafire.com/?7g3fetvaqhoqgh8

我的计算机大约需要30分钟才能完成4096 ^ 2的图像,这比我第一次实施时需要的32天有了很大的改进。


1
哎哟; 32天听起来并不有趣.....在优化之前,fejesjocos的平均算法在4k上可能要花费几个月的时间
masterX244 2014年

5
我爱他的朋克眉毛!
级圣河

45

Java与BubbleSort

(通常Bubblesort并不太喜欢,但是对于这个挑战,它最终还是有用的:)生成了一条线,其中所有元素相隔4096步,然后将其改组;排序通过,每个喜欢的对象在被排序时都为其值添加了1,这样结果就得到了已排序的值和所有颜色

更新了源代码以删除那些大条纹
(需要一些按位魔术:P)

class Pix
{
    public static void main(String[] devnull) throws Exception
    {
        int chbits=8;
        int colorsperchannel=1<<chbits;
        int xsize=4096,ysize=4096;
        System.out.println(colorsperchannel);
        int[] x = new int[xsize*ysize];//colorstream

        BufferedImage i = new BufferedImage(xsize,ysize, BufferedImage.TYPE_INT_RGB);
        List<Integer> temp = new ArrayList<>();
        for (int j = 0; j < 4096; j++)
        {
            temp.add(4096*j);
        }
        int[] temp2=new int[4096];

        Collections.shuffle(temp,new Random(9263));//intended :P looked for good one
        for (int j = 0; j < temp.size(); j++)
        {
            temp2[j]=(int)(temp.get(j));
        }
        x = spezbubblesort(temp2, 4096);
        int b=-1;
        int b2=-1;
        for (int j = 0; j < x.length; j++)
        {
            if(j%(4096*16)==0)b++;
            if(j%(4096)==0)b2++;
            int h=j/xsize;
            int w=j%xsize;
            i.setRGB(w, h, x[j]&0xFFF000|(b|(b2%16)<<8));
            x[j]=x[j]&0xFFF000|(b|(b2%16)<<8);
        }  

        //validator sorting and checking that all values only have 1 difference
        Arrays.sort(x);
        int diff=0;
        for (int j = 1; j < x.length; j++)
        {
            int ndiff=x[j]-x[j-1];
            if(ndiff!=diff)
            {
                System.out.println(ndiff);
            }
            diff=ndiff;

        }
        OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB24.bmp"));
        ImageIO.write(i, "bmp", out);

    }
    public static int[] spezbubblesort(int[] vals,int lines)
    {
        int[] retval=new int[vals.length*lines];
        for (int i = 0; i < lines; i++)
        {
            retval[(i<<12)]=vals[0];
            for (int j = 1; j < vals.length; j++)
            {
                retval[(i<<12)+j]=vals[j];
                if(vals[j]<vals[j-1])
                {

                    int temp=vals[j-1];
                    vals[j-1]=vals[j];
                    vals[j]=temp;
                }
                vals[j-1]=vals[j-1]+1;
            }
            vals[lines-1]=vals[lines-1]+1;
        }
        return retval;
    }
}

结果:

旧版本

class Pix
{
    public static void main(String[] devnull) throws Exception
    {
        int[] x = new int[4096*4096];//colorstream
        int idx=0;
        BufferedImage i = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        //GENCODE
        List<Integer> temp = new ArrayList<>();
        for (int j = 0; j < 4096; j++)
        {
            temp.add(4096*j);
        }
        int[] temp2=new int[4096];

        Collections.shuffle(temp,new Random(9263));//intended :P looked for good one
        for (int j = 0; j < temp.size(); j++)
        {
            temp2[j]=(int)(temp.get(j));
        }
        x = spezbubblesort(temp2, 4096);
        for (int j = 0; j < x.length; j++)
        {
            int h=j/4096;
            int w=j%4096;
            i.setRGB(w, h, x[j]);
        }
        //validator sorting and checking that all values only have 1 difference
        Arrays.sort(x);
        int diff=0;
        for (int j = 1; j < x.length; j++)
        {
            int ndiff=x[j]-x[j-1];
            if(ndiff!=diff)
            {
                System.out.println(ndiff);
            }
            diff=ndiff;

        }
        OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB24.bmp"));
        ImageIO.write(i, "bmp", out);
    }
    public static int[] spezbubblesort(int[] vals,int lines)
    {
        int[] retval=new int[vals.length*lines];
        for (int i = 0; i < lines; i++)
        {
            retval[(i<<12)]=vals[0];
            for (int j = 1; j < vals.length; j++)
            {
                retval[(i<<12)+j]=vals[j];
                if(vals[j]<vals[j-1])
                {

                    int temp=vals[j-1];
                    vals[j-1]=vals[j];
                    vals[j]=temp;
                }
                vals[j-1]=vals[j-1]+1;
            }
            vals[lines-1]=vals[lines-1]+1;
        }
        return retval;
    }
}

输出预览


allRGB页面上已经有一个QuickSort版本。
Mark Jeronimus 2014年

1
@ Zom-B Quicksort与Bubblesort是不同的算法
masterX244 2014年

43

C

由于我不了解的原因,创建了一个涡旋,其中偶数和奇数帧包含完全不同的涡旋。

这是前50个奇数帧的预览:

涡流预览

从PPM转换为演示完整颜色覆盖的示例图像:

样本图片

稍后,当它们全部融合为灰色时,您仍然可以看到它在旋转:更长的序列

代码如下。要运行,请包括帧号,例如:

./vortex 35 > 35.ppm

我用它来获得GIF动画:

转换-delay 10`ls * .ppm | 排序-n | xargs` -loop 0 vortex.gif
#include <stdlib.h>
#include <stdio.h>

#define W 256
#define H 128

typedef struct {unsigned char r, g, b;} RGB;

int S1(const void *a, const void *b)
{
    const RGB *p = a, *q = b;
    int result = 0;

    if (!result)
        result = (p->b + p->g * 6 + p->r * 3) - (q->b + q->g * 6 + q->r * 3);

    return result;
}

int S2(const void *a, const void *b)
{
    const RGB *p = a, *q = b;
    int result = 0;

    if (!result)
        result = p->b * 6 - p->g;
    if (!result)
        result = p->r - q->r;
    if (!result)
        result = p->g - q->b * 6;

    return result;
}

int main(int argc, char *argv[])
{
    int i, j, n;
    RGB *rgb = malloc(sizeof(RGB) * W * H);
    RGB c[H];

    for (i = 0; i < W * H; i++)
    {
        rgb[i].b = (i & 0x1f) << 3;
        rgb[i].g = ((i >> 5) & 0x1f) << 3;
        rgb[i].r = ((i >> 10) & 0x1f) << 3;
    }

    qsort(rgb, H * W, sizeof(RGB), S1);

    for (n = 0; n < atoi(argv[1]); n++)
    {
        for (i = 0; i < W; i++)
        {
            for (j = 0; j < H; j++)
                c[j] = rgb[j * W + i];
            qsort(c, H, sizeof(RGB), S2);
            for (j = 0; j < H; j++)
                rgb[j * W + i] = c[j];
        }

        for (i = 0; i < W * H; i += W)
            qsort(rgb + i, W, sizeof(RGB), S2);
    }

    printf("P6 %d %d 255\n", W, H);
    fwrite(rgb, sizeof(RGB), W * H, stdout);

    free(rgb);

    return 0;
}

53
当发生“我不理解的原因”时,您知道它是C。
Nit 2014年

2
是的,通常我知道会发生什么,但是在这里我只是在玩耍看看我能得到什么模式,然后这个无止境的乱序秩序出现了。

8
它之所以涡旋是因为您的比较函数未遵循三角形不等式。例如,r> b,b> g,g> r。我什至无法将其移植到Java,因为它的mergesort依赖于此属性,因此出现异常“比较方法违反了它的一般约定!”
Mark Jeronimus 2014年

2
我会尝试的,p->b * 6 - q->g;但是如果它破坏了旋涡,将无法解决!

4
+1是我不明白的原因。
杰森C

40

爪哇

512x512中颜色选择器的变体。优雅的代码不是,但是我喜欢漂亮的图片:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;

import javax.imageio.ImageIO;

public class EighteenBitColors {

    static boolean shuffle_block = false;
    static int shuffle_radius = 0;

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(512, 512, BufferedImage.TYPE_INT_RGB);
        for(int r=0;r<64;r++)
            for(int g=0;g<64;g++)
                for(int b=0;b<64;b++)
                    img.setRGB((r * 8) + (b / 8), (g * 8) + (b % 8), ((r * 4) << 8 | (g * 4)) << 8 | (b * 4));

        if(shuffle_block)
            blockShuffle(img);
        else
            shuffle(img, shuffle_radius);

        try {           
            ImageIO.write(img, "png", new File(getFileName()));
        } catch(IOException e){
            System.out.println("suck it");
        }
    }

    public static void shuffle(BufferedImage img, int radius){
        if(radius < 1)
            return;
        int width = img.getWidth();
        int height = img.getHeight();
        Random rand = new Random();
        for(int x=0;x<512;x++){
            for(int y=0;y<512;y++){
                int xx = -1;
                int yy = -1;
                while(xx < 0 || xx >= width){
                    xx = x + rand.nextInt(radius*2+1) - radius;
                }
                while(yy < 0 || yy >= height){
                    yy = y + rand.nextInt(radius*2+1) - radius;
                }
                int tmp = img.getRGB(xx, yy);
                img.setRGB(xx, yy, img.getRGB(x, y));
                img.setRGB(x,y,tmp);
            }
        }
    }

    public static void blockShuffle(BufferedImage img){
        int tmp;
        Random rand = new Random();
        for(int bx=0;bx<8;bx++){
            for(int by=0;by<8;by++){
                for(int x=0;x<64;x++){
                    for(int y=0;y<64;y++){
                        int xx = bx*64+x;
                        int yy = by*64+y;
                        int xxx = bx*64+rand.nextInt(64);
                        int yyy = by*64+rand.nextInt(64);
                        tmp = img.getRGB(xxx, yyy);
                        img.setRGB(xxx, yyy, img.getRGB(xx, yy));
                        img.setRGB(xx,yy,tmp);
                    }
                }
            }
        }
    }

    public static String getFileName(){
        String fileName = "allrgb_";
        if(shuffle_block){
            fileName += "block";
        } else if(shuffle_radius > 0){
            fileName += "radius_" + shuffle_radius;
        } else {
            fileName += "no_shuffle";
        }
        return fileName + ".png";
    }
}

如所写,它输出:

没有洗牌

如果使用来运行它shuffle_block = true,它将在每个64x64块中随机播放颜色:

块洗牌

否则,如果使用来运行它shuffle_radius > 0,它将shuffle_radius以x / y 为单位随机排列每个像素。玩完各种尺寸后,我喜欢32像素的半径,因为它可以模糊线条,而不会使内容过分移动:

在此处输入图片说明


3
哦,这些照片是最漂亮的
sevenseacat

这些真是太好了
马修(Matthew)

37

处理中

我刚开始使用C(已经用其他语言编程),但是发现Visual C中的图形很难遵循,因此我下载了@ace使用的此Processing程序。

这是我的代码和算法。

void setup(){
  size(256,128);
  background(0);
  frameRate(1000000000);
  noLoop();
 }

int x,y,r,g,b,c;
void draw() {
  for(y=0;y<128;y++)for(x=0;x<128;x++){
    r=(x&3)+(y&3)*4;
    g=x>>2;
    b=y>>2;
    c=0;
    //c=x*x+y*y<10000? 1:0; 
    stroke((r^16*c)<<3,g<<3,b<<3);
    point(x,y);
    stroke((r^16*(1-c))<<3,g<<3,b<<3);
    point(255-x,y);  
  } 
}

算法

以x,y中32个绿色和蓝色值的所有可能组合的4x4平方开始。格式,使一个128x128正方形每个4x4正方形具有16个像素,因此在其旁边制作一个镜像,可以为下面的每个图像提供32个像素的绿色和蓝色的每种可能组合。

(一般来说,完整的绿色看上去比完整的青色亮。这一定是错觉。在评论中得到澄清)

在左侧的正方形中,添加红色值0-15。对于右边的正方形,将这些值与16进行XOR,以使值16-31。

在此处输入图片说明

输出256x128

这将在下面的顶部图像中提供输出。

但是,每个像素与其镜像仅在红色值的最高有效位不同。因此,我可以使用带有变量的条件c来反转XOR,其效果与交换这两个像素相同。

下图给出了一个示例(如果我们取消注释当前被注释掉的代码行)。

在此处输入图片说明

512 x 512-向安迪·沃霍尔的《玛丽琳》致敬

受Quincunx在徒手绘制的红色圆圈中用“邪恶的笑容”回答这个问题的启发,这是我对那幅著名图片的描述。最初的作品实际上有25幅彩色的玛丽琳和25幅黑白玛丽琳,是沃霍尔在玛丽娜过世后向玛丽琳致敬。参见http://en.wikipedia.org/wiki/Marilyn_Diptych

在发现Processing将我在256x128中使用的那些渲染为半透明后,我改变了功能。新的是不透明的。

尽管图像不是完全算法化的,但我还是很喜欢。

int x,y,r,g,b,c;
PImage img;
color p;
void setup(){
  size(512,512);
  background(0);
  img = loadImage("marylin256.png");
  frameRate(1000000000);
  noLoop();
 }

void draw() {

   image(img,0,0);

   for(y=0;y<256;y++)for(x=0;x<256;x++){
      // Note the multiplication by 0 in the next line. 
      // Replace the 0 with an 8 and the reds are blended checkerboard style
      // This reduces the grain size, but on balance I decided I like the grain.
      r=((x&3)+(y&3)*4)^0*((x&1)^(y&1));
      g=x>>2;
      b=y>>2; 
      c=brightness(get(x,y))>100? 32:0;
      p=color((r^c)<<2,g<<2,b<<2);
      set(x,y,p);
      p=color((r^16^c)<<2,g<<2,b<<2);
      set(256+x,y,p);  
      p=color((r^32^c)<<2,g<<2,b<<2);
      set(x,256+y,p);
      p=color((r^48^c)<<2,g<<2,b<<2);
      set(256+x,256+y,p);  
 } 
 save("warholmarylin.png");

}

在此处输入图片说明

512x512暮光之城在远处的群山之中

这是一张完整的算法图。我一直在尝试更改根据条件调制的颜色,但我得出的结论是红色最有效。与Marylin图片类似,我先绘制山峰,然后从该图片中选取亮度以覆盖正RGB图像,同时复制到负一半。略有不同是,许多山脉的底部(因为它们都被绘制为相同大小)延伸到读取区域的下方,因此在读取过程中仅对该区域进行了裁剪(因此给人不同大小山脉的期望印象)。 )

在这个例子中,我使用一个8x4的单元格,其中32个红色为正,其余32个红色为负。

请注意代码末尾的显式命令frameRate(1)。我发现如果没有此命令,即使完成绘制,Processing仍将使用100%的CPU内核。据我所知没有睡眠功能,您所能做的就是减少轮询的频率。

int i,j,x,y,r,g,b,c;
PImage img;
color p;
void setup(){
  size(512,512);
  background(255,255,255);
  frameRate(1000000000);
  noLoop();
 }

void draw() {
  for(i=0; i<40; i++){
    x=round(random(512));
    y=round(random(64,256));
    for(j=-256; j<256; j+=12) line(x,y,x+j,y+256);  
  }
  for(y=0;y<256;y++)for(x=0;x<512;x++){
    r=(x&7)+(y&3)*8;
    b=x>>3;
    g=(255-y)>>2;
    c=brightness(get(x,y))>100? 32:0;
    p=color((r^c)<<2,g<<2,b<<2);
    set(x,y,p);
    p=color((r^32^c)<<2,g<<2,b<<2);
    set(x,511-y,p);  
  }
  save("mountainK.png");
  frameRate(1);
}

在此处输入图片说明


因为它根本没有全青色。是(0,217,217)。虽然所有32个组合都存在,但没有扩展[0,255]。编辑:您正在使用7的步骤,但我在代码中找不到。必须是正在处理的东西。
Mark Jeronimus 2014年

@steveverrill在处理中,您可以save("filename.png")将当前帧缓冲区保存到图像。还支持其他图像格式。它将省去拍摄屏幕截图的麻烦。图像将保存到草图的文件夹中。
杰森C

@Jasonc感谢您的提示,我确定必须有一种方法,但是我认为我不会编辑这些方法。我将图像的框架部分分开以分开它们(这样的小图像有2个文件是过分的。)我想以512x512的分辨率制作一些图像(尤其是我有一个想法),因此我将以这种方式上传你建议。
水平河圣

1
@steveverrill哈哈,沃霍尔一家人很好。
杰森C

@ Zom-B Processing似乎做了很多(令人讨厌的)文档中没有提到的事情:在其物理输出中不使用完整的256个逻辑颜色通道值,在不需要时混合颜色,使用完整的即使完成绘制后,我的CPU也是如此。仍然很简单,一旦知道这些问题就可以解决这些问题(除了第一个问题,我还没有解决...)
Level River St

35

我只是在JavaScript 的希尔伯特曲线上排列了所有16位颜色(5r,6g,5b)。

希尔伯特曲线颜色

上一张(不是希尔伯特曲线)图像:

希尔伯特曲线

JSfiddle:jsfiddle.net/LCsLQ/3

的JavaScript

// ported code from http://en.wikipedia.org/wiki/Hilbert_curve
function xy2d (n, p) {
    p = {x: p.x, y: p.y};
    var r = {x: 0, y: 0},
        s,
        d=0;
    for (s=(n/2)|0; s>0; s=(s/2)|0) {
        r.x = (p.x & s) > 0 ? 1 : 0;
        r.y = (p.y & s) > 0 ? 1 : 0;
        d += s * s * ((3 * r.x) ^ r.y);
        rot(s, p, r);
    }
    return d;
}

//convert d to (x,y)
function d2xy(n, d) {
    var r = {x: 0, y: 0},
        p = {x: 0, y: 0},
        s,
        t=d;
    for (s=1; s<n; s*=2) {
        r.x = 1 & (t/2);
        r.y = 1 & (t ^ rx);
        rot(s, p, r);
        p.x += s * r.x;
        p.y += s * r.y;
        t /= 4;
    }
    return p;
}

//rotate/flip a quadrant appropriately
function rot(n, p, r) {
    if (r.y === 0) {
        if (r.x === 1) {
            p.x = n-1 - p.x;
            p.y = n-1 - p.y;
        }

        //Swap x and y
        var t  = p.x;
        p.x = p.y;
        p.y = t;
    }
}
function v2rgb(v) {
    return ((v & 0xf800) << 8) | ((v & 0x7e0) << 5) | ((v & 0x1f) << 3); 
}
function putData(arr, size, coord, v) {
    var pos = (coord.x + size * coord.y) * 4,
        rgb = v2rgb(v);

    arr[pos] = (rgb & 0xff0000) >> 16;
    arr[pos + 1] = (rgb & 0xff00) >> 8;
    arr[pos + 2] = rgb & 0xff;
    arr[pos + 3] = 0xff;
}
var size = 256,
    context = a.getContext('2d'),
    data = context.getImageData(0, 0, size, size);

for (var i = 0; i < size; i++) {
    for (var j = 0; j < size; j++) {
        var p = {x: j, y: i};
        putData(data.data, size, p, xy2d(size, p));
    }
}
context.putImageData(data, 0, 0);

编辑:事实证明我的函数无法计算希尔伯特曲线,这是不正确的;即r.x = (p.x & s) > 0; r.y = (p.y & s) > 0;更改为r.x = (p.x & s) > 0 ? 1 : 0; r.y = (p.y & s) > 0 ? 1 : 0;

编辑2:另一个分形:

谢尔宾斯基

http://jsfiddle.net/jej2d/5/


真好!欢迎来到PPCG。
Jonathan Van Matre 2014年

当穿过颜色立方体也是3D Hilbert曲线时,它看起来像什么?编辑 nm。有人这样做。
Mark Jeronimus 2014年

35

C#:迭代局部相似性优化

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Drawing.Imaging;

namespace AllColors
{
    class Program
    {
        static Random _random = new Random();

        const int ImageWidth = 256;
        const int ImageHeight = 128;
        const int PixelCount = ImageWidth * ImageHeight;
        const int ValuesPerChannel = 32;
        const int ChannelValueDelta = 256 / ValuesPerChannel;

        static readonly int[,] Kernel;
        static readonly int KernelWidth;
        static readonly int KernelHeight;

        static Program()
        {
            // Version 1
            Kernel = new int[,] { { 0, 1, 0, },
                                  { 1, 0, 1, },
                                  { 0, 1, 0, } };
            // Version 2
            //Kernel = new int[,] { { 0, 0, 1, 0, 0 },
            //                      { 0, 2, 3, 2, 0 },
            //                      { 1, 3, 0, 3, 1 },
            //                      { 0, 2, 3, 2, 0 },
            //                      { 0, 0, 1, 0, 0 } };
            // Version 3
            //Kernel = new int[,] { { 3, 0, 0, 0, 3 },
            //                      { 0, 1, 0, 1, 0 },
            //                      { 0, 0, 0, 0, 0 },
            //                      { 0, 1, 0, 1, 0 },
            //                      { 3, 0, 0, 0, 3 } };
            // Version 4
            //Kernel = new int[,] { { -9, -9, -9, -9, -9 },
            //                      {  1,  2,  3,  2,  1 },
            //                      {  2,  3,  0,  3,  2 },
            //                      {  1,  2,  3,  2,  1 },
            //                      {  0,  0,  0,  0,  0 } };
            // Version 5
            //Kernel = new int[,] { { 0, 0, 1, 0, 0, 0, 0 },
            //                      { 0, 1, 2, 1, 0, 0, 0 },
            //                      { 1, 2, 3, 0, 1, 0, 0 },
            //                      { 0, 1, 2, 0, 0, 0, 0 },
            //                      { 0, 0, 1, 0, 0, 0, 0 } };
            KernelWidth = Kernel.GetLength(1);
            KernelHeight = Kernel.GetLength(0);

            if (KernelWidth % 2 == 0 || KernelHeight % 2 == 0)
            {
                throw new InvalidOperationException("Invalid kernel size");
            }
        }

        private static Color[] CreateAllColors()
        {
            int i = 0;
            Color[] colors = new Color[PixelCount];
            for (int r = 0; r < ValuesPerChannel; r++)
            {
                for (int g = 0; g < ValuesPerChannel; g++)
                {
                    for (int b = 0; b < ValuesPerChannel; b++)
                    {
                        colors[i] = Color.FromArgb(255, r * ChannelValueDelta, g * ChannelValueDelta, b * ChannelValueDelta);
                        i++;
                    }
                }
            }
            return colors;
        }

        private static void Shuffle(Color[] colors)
        {
            // Knuth-Fisher-Yates shuffle
            for (int i = colors.Length - 1; i > 0; i--)
            {
                int n = _random.Next(i + 1);
                Swap(colors, i, n);
            }
        }

        private static void Swap(Color[] colors, int index1, int index2)
        {
            var temp = colors[index1];
            colors[index1] = colors[index2];
            colors[index2] = temp;
        }

        private static Bitmap ToBitmap(Color[] pixels)
        {
            Bitmap bitmap = new Bitmap(ImageWidth, ImageHeight);
            int x = 0;
            int y = 0;
            for (int i = 0; i < PixelCount; i++)
            {
                bitmap.SetPixel(x, y, pixels[i]);
                x++;
                if (x == ImageWidth)
                {
                    x = 0;
                    y++;
                }
            }
            return bitmap;
        }

        private static int GetNeighborDelta(Color[] pixels, int index1, int index2)
        {
            return GetNeighborDelta(pixels, index1) + GetNeighborDelta(pixels, index2);
        }

        private static int GetNeighborDelta(Color[] pixels, int index)
        {
            Color center = pixels[index];
            int sum = 0;
            for (int x = 0; x < KernelWidth; x++)
            {
                for (int y = 0; y < KernelHeight; y++)
                {
                    int weight = Kernel[y, x];
                    if (weight == 0)
                    {
                        continue;
                    }

                    int xOffset = x - (KernelWidth / 2);
                    int yOffset = y - (KernelHeight / 2);
                    int i = index + xOffset + yOffset * ImageWidth;

                    if (i >= 0 && i < PixelCount)
                    {
                        sum += GetDelta(pixels[i], center) * weight;
                    }
                }
            }

            return sum;
        }

        private static int GetDelta(Color c1, Color c2)
        {
            int sum = 0;
            sum += Math.Abs(c1.R - c2.R);
            sum += Math.Abs(c1.G - c2.G);
            sum += Math.Abs(c1.B - c2.B);
            return sum;
        }

        private static bool TryRandomSwap(Color[] pixels)
        {
            int index1 = _random.Next(PixelCount);
            int index2 = _random.Next(PixelCount);

            int delta = GetNeighborDelta(pixels, index1, index2);
            Swap(pixels, index1, index2);
            int newDelta = GetNeighborDelta(pixels, index1, index2);

            if (newDelta < delta)
            {
                return true;
            }
            else
            {
                // Swap back
                Swap(pixels, index1, index2);
                return false;
            }
        }

        static void Main(string[] args)
        {
            string fileNameFormat = "{0:D10}.png";
            var image = CreateAllColors();
            ToBitmap(image).Save("start.png");
            Shuffle(image);
            ToBitmap(image).Save(string.Format(fileNameFormat, 0));

            long generation = 0;
            while (true)
            {
                bool swapped = TryRandomSwap(image);
                if (swapped)
                {
                    generation++;
                    if (generation % 1000 == 0)
                    {
                        ToBitmap(image).Save(string.Format(fileNameFormat, generation));
                    }
                }
            }
        }
    }
}

理念

首先,我们从随机洗牌开始:

在此处输入图片说明

然后,我们随机选择两个像素并交换它们。如果这不会增加像素与其相邻像素的相似度,我们将调回并重试。我们一遍又一遍地重复此过程。

短短几代(5000)之后,差异并不明显...

在此处输入图片说明

但是它运行的时间越长(25000),...

在此处输入图片说明

...越来越多的特定模式开始出现(100000)。

在此处输入图片说明

使用不同的邻域定义,我们可以影响这些模式以及它们是否稳定。该Kernel矩阵类似于图像处理中用于过滤器的矩阵。它指定用于RGB增量计算的每个邻居的权重。

结果

这是我创建的一些结果。视频显示了迭代过程(1帧== 1000代),但是质量不是最好的(vimeo,YouTube等未正确支持如此小的尺寸)。我稍后可能会尝试创建质量更高的视频。

0 1 0
1 X 1
0 1 0

185000代:

在此处输入图片说明 影片(00:06)


0 0 1 0 0
0 2 3 2 0
1 3 X 3 1
0 2 3 2 0
0 0 1 0 0

243000代:

在此处输入图片说明 影片(00:07)


3 0 0 0 3
0 1 0 1 0
0 0 X 0 0
0 1 0 1 0
3 0 0 0 3

230000代:

在此处输入图片说明 影片(00:07)


0 0 1 0 0 0 0
0 1 2 1 0 0 0
1 2 3 X 1 0 0
0 1 2 0 0 0 0
0 0 1 0 0 0 0

该内核很有趣,因为其不对称性导致图案不稳定,并且随着图像的流逝,整个图像向右移动。

2331000代:

在此处输入图片说明 影片(01:10)


大型结果(512x512)

将上述内核与较大的图像尺寸配合使用会创建相同的局部模式,并覆盖较大的总面积。512x512的图像需要1到200万代才能稳定下来。

在此处输入图片说明 在此处输入图片说明 在此处输入图片说明


好的,现在让我们开始认真研究,并使用15x15的径向内核创建更大,更少局部的模式:

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 2 2 2 2 2 1 1 0 0 0
0 0 1 2 2 3 3 3 3 3 2 2 1 0 0
0 1 2 2 3 4 4 4 4 4 3 2 2 1 0
0 1 2 3 4 4 5 5 5 4 4 3 2 1 0
1 2 3 4 4 5 6 6 6 5 4 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 X 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 4 5 6 6 6 5 4 4 3 2 1
0 1 2 3 4 4 5 5 5 4 4 3 2 1 0
0 1 2 2 3 4 4 4 4 4 3 2 2 1 0
0 0 1 2 2 3 3 3 3 3 2 2 1 0 0
0 0 0 1 1 2 2 2 2 2 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

这大大增加了每代的计算时间。171万代和20小时后:

在此处输入图片说明


1
需要一段时间才能到达那里,但最终结果还是不错的。
primo

有趣的巧合是,我在同一主题上有一篇文章:nayuki.io/page/simulated-annealing-demo
Nayuki 2016年

30

爪哇

在我的其他答案上有一些变化,我们可以得到一些非常有趣的输出。

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);

        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096; x++) {
                points.add(new Point(x, y));
            }
        }
        Collections.sort(points, new Comparator<Point>() {

            @Override
            public int compare(Point t, Point t1) {
                int compareVal = (Integer.bitCount(t.x) + Integer.bitCount(t.y))
                        - (Integer.bitCount(t1.x) + Integer.bitCount(t1.y));
                return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
            }

        });
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

重要的代码在这里:

Collections.sort(points, new Comparator<Point>() {

    @Override
    public int compare(Point t, Point t1) {
        int compareVal = (Integer.bitCount(t.x) + Integer.bitCount(t.y))
                - (Integer.bitCount(t1.x) + Integer.bitCount(t1.y));
        return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
    }

});

输出(屏幕截图):

在此处输入图片说明

将比较器更改为此:

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x + t.y))
            - (Integer.bitCount(t1.x + t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

我们得到这个:

在此处输入图片说明

另一个变化:

public int compare(Point t, Point t1) {
    int compareVal = (t.x + t.y)
            - (t1.x + t1.y);
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

在此处输入图片说明

另一个变化(让我想起了细胞自动机):

public int compare(Point t, Point t1) {
    int compareVal = (t1.x - t.y)
            + (t.x - t1.y);
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

在此处输入图片说明

另一个变化(新的个人喜好):

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x ^ t.y))
            - (Integer.bitCount(t1.x ^ t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

在此处输入图片说明

它看起来很分形。XOR非常漂亮,尤其是特写镜头:

在此处输入图片说明

另一个特写:

在此处输入图片说明

现在,Sierpinski三角形倾斜了:

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x | t.y))
            - (Integer.bitCount(t1.x | t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

在此处输入图片说明


8
第一张图片看起来像CPU或内存的照片
Nick T

@NickT这是一个用于对比的记忆模头(根据Google图像):files.macbidouille.com/mbv2/news/news_05_10/25-nm-die.jpg
贾斯汀

4
是的,内存是如此无形……可能是一个非常多核的处理器,然后:Extremetech.com/wp-content/uploads/2012/07/Aubrey_Isle_die.jpg
Nick T

1
我真的很喜欢后面的那些。看起来很小故障,但具有基本的组织结构。我想要一种类似XOR设计的地毯!
乔纳森·范·马特雷

这些真的很棒。他们有点让我想起街机游戏坏或其他问题。
詹森·C

29

爪哇

我实际上不确定如何创建15位或18位颜色,因此我只留下了每个通道字节的最低有效位来制作2 ^ 18种不同的24位颜色。通过分类可以消除大多数噪声,但有效的噪声消除似乎需要比较器同时进行两个以上元素的比较。我将尝试使用更大的内核进行操作,但是与此同时,这是我所能做到的最好的。

在此处输入图片说明

点击查看高清图片#2

低分辨率图片#2

import java.awt.*;
import java.awt.image.*;
import javax.swing.*;
import java.util.*;

public class ColorSpan extends JFrame{
    private int h, w = h = 512;
    private BufferedImage image = 
            new BufferedImage(w,h,BufferedImage.TYPE_INT_RGB);
    private WritableRaster raster = image.getRaster();
    private DataBufferInt dbInt = (DataBufferInt) 
            (raster.getDataBuffer());
    private int[] data = dbInt.getData();

    private JLabel imageLabel = new JLabel(new ImageIcon(image));
    private JPanel bordered = new JPanel(new BorderLayout());


    public <T> void transpose(ArrayList<T> objects){
        for(int i = 0; i < w; i++){
            for(int j = 0; j < i; j++){
                Collections.swap(objects,i+j*w,j+i*h);
            }
        }
    }

    public <T> void sortByLine(ArrayList<T> objects, Comparator<T> comp){
        for(int i = 0; i < h; i++){
            Collections.sort(objects.subList(i*w, (i+1)*w), comp);
        }
    }

    public void init(){
        ArrayList<Integer> colors = new ArrayList<Integer>();
        for(int i = 0, max = 1<<18; i < max; i++){
            int r = i>>12, g = (i>>6)&63, b = i&63;
            colors.add(((r<<16)+(g<<8)+b)<<2);
        }

        Comparator<Integer> comp1 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255;
                /*double thA = Math.acos(gA*2d/255-1),
                        thB = Math.acos(gB*2d/255-1);*/
                double thA = Math.atan2(rA/255d-.5,gA/255d-.5),
                        thB = Math.atan2(rB/255d-.5,gB/255d-.5);
                return -Double.compare(thA,thB);
            }
        }, comp2 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255,
                    bA = a&255, bB = b&255;
                double dA = Math.hypot(gA-rA,bA-rA),
                        dB = Math.hypot(gB-rB,bB-rB);
                return Double.compare(dA,dB);
            }
        }, comp3 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255,
                    bA = a&255, bB = b&255;

                    return Integer.compare(rA+gA+bA,rB+gB+bB);
            }
        };

        /* Start: Image 1 */
        Collections.sort(colors, comp2);
        transpose(colors);
        sortByLine(colors,comp2);
        transpose(colors);
        sortByLine(colors,comp1);
        transpose(colors);
        sortByLine(colors,comp2);
        sortByLine(colors,comp3);
        /* End: Image 1 */

        /* Start: Image 2 */
        Collections.sort(colors, comp1);
        sortByLine(colors,comp2);

        transpose(colors);
        sortByLine(colors,comp2);
        transpose(colors);
        sortByLine(colors,comp1);
        transpose(colors);
        sortByLine(colors,comp1);
        /* End: Image 2 */

        int index = 0;
        for(Integer color : colors){
            int cInt = color.intValue();
            data[index] = cInt;
            index++;
        }

    }

    public ColorSpan(){
        super("512x512 Unique Colors");
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        init();

        bordered.setBorder(BorderFactory.createEmptyBorder(2,2,2,2));
        bordered.add(imageLabel,BorderLayout.CENTER);
        add(bordered,BorderLayout.CENTER);
        pack();

    }

    public static void main(String[] args){
        new ColorSpan().setVisible(true);
    }
}

1
那第二个真的值得拥有4096 x 4096 24位版本...
trichoplax

Imgur已经处理了大约半小时的图像。我想它可能正在尝试压缩它。无论如何,我添加了一个链接:SSend.it/hj4ovh
John P

2
下载存在问题。
SuperJedi224

28

斯卡拉

我通过L系统行走3 维希尔伯特曲线来订购所有颜色。然后,我沿着二维希尔伯特曲线移动输出图像中的像素,并对所有颜色进行布局。

512 x 512输出:

在此处输入图片说明

这是代码。其中大部分内容仅涉及通过俯仰/滚动/偏航在三个维度上移动的逻辑和数学。我敢肯定有更好的方法可以做到这一点,但是哦。

import scala.annotation.tailrec
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
import java.io.File

object AllColors {

  case class Vector(val x: Int, val y: Int, val z: Int) {
    def applyTransformation(m: Matrix): Vector = {
      Vector(m.r1.x * x + m.r1.y * y + m.r1.z * z, m.r2.x * x + m.r2.y * y + m.r2.z * z, m.r3.x * x + m.r3.y * y + m.r3.z * z)
    }
    def +(v: Vector): Vector = {
      Vector(x + v.x, y + v.y, z + v.z)
    }
    def unary_-(): Vector = Vector(-x, -y, -z)
  }

  case class Heading(d: Vector, s: Vector) {
    def roll(positive: Boolean): Heading = {
      val (axis, b) = getAxis(d)
      Heading(d, s.applyTransformation(rotationAbout(axis, !(positive ^ b))))
    }

    def yaw(positive: Boolean): Heading = {
      val (axis, b) = getAxis(s)
      Heading(d.applyTransformation(rotationAbout(axis, positive ^ b)), s)
    }

    def pitch(positive: Boolean): Heading = {
      if (positive) {
        Heading(s, -d)
      } else {
        Heading(-s, d)
      }
    }

    def applyCommand(c: Char): Heading = c match {
      case '+' => yaw(true)
      case '-' => yaw(false)
      case '^' => pitch(true)
      case 'v' => pitch(false)
      case '>' => roll(true)
      case '<' => roll(false)
    }
  }

  def getAxis(v: Vector): (Char, Boolean) = v match {
    case Vector(1, 0, 0) => ('x', true)
    case Vector(-1, 0, 0) => ('x', false)
    case Vector(0, 1, 0) => ('y', true)
    case Vector(0, -1, 0) => ('y', false)
    case Vector(0, 0, 1) => ('z', true)
    case Vector(0, 0, -1) => ('z', false)
  }

  def rotationAbout(axis: Char, positive: Boolean) = (axis, positive) match {
    case ('x', true) => XP
    case ('x', false) => XN
    case ('y', true) => YP
    case ('y', false) => YN
    case ('z', true) => ZP
    case ('z', false) => ZN
  }

  case class Matrix(val r1: Vector, val r2: Vector, val r3: Vector)

  val ZP = Matrix(Vector(0,-1,0),Vector(1,0,0),Vector(0,0,1))
  val ZN = Matrix(Vector(0,1,0),Vector(-1,0,0),Vector(0,0,1))

  val XP = Matrix(Vector(1,0,0),Vector(0,0,-1),Vector(0,1,0))
  val XN = Matrix(Vector(1,0,0),Vector(0,0,1),Vector(0,-1,0))

  val YP = Matrix(Vector(0,0,1),Vector(0,1,0),Vector(-1,0,0))
  val YN = Matrix(Vector(0,0,-1),Vector(0,1,0),Vector(1,0,0))

  @tailrec def applyLSystem(current: Stream[Char], rules: Map[Char, List[Char]], iterations: Int): Stream[Char] = {
    if (iterations == 0) {
      current
    } else {
      val nextStep = current flatMap { c => rules.getOrElse(c, List(c)) }
      applyLSystem(nextStep, rules, iterations - 1)
    }
  }

  def walk(x: Vector, h: Heading, steps: Stream[Char]): Stream[Vector] = steps match {
    case Stream() => Stream(x)
    case 'f' #:: rest => x #:: walk(x + h.d, h, rest)
    case c #:: rest => walk(x, h.applyCommand(c), rest)
  }

  def hilbert3d(n: Int): Stream[Vector] = {
    val rules = Map('x' -> "^>x<f+>>x<<f>>x<<+fvxfxvf+>>x<<f>>x<<+f>x<^".toList)
    val steps = applyLSystem(Stream('x'), rules, n) filterNot (_ == 'x')
    walk(Vector(0, 0, 0), Heading(Vector(1, 0, 0), Vector(0, 1, 0)), steps)
  }

  def hilbert2d(n: Int): Stream[Vector] = {
    val rules = Map('a' -> "-bf+afa+fb-".toList, 'b' -> "+af-bfb-fa+".toList)
    val steps = applyLSystem(Stream('a'), rules, n) filterNot (c => c == 'a' || c == 'b')
    walk(Vector(0, 0, 0), Heading(Vector(1, 0, 0), Vector(0, 0, 1)), steps)
  }

  def main(args: Array[String]): Unit = {
    val n = 4
    val img = new BufferedImage(1 << (3 * n), 1 << (3 * n), BufferedImage.TYPE_INT_RGB)
    hilbert3d(n * 2).zip(hilbert2d(n * 3)) foreach { case (Vector(r,g,b), Vector(x,y,_)) => img.setRGB(x, y, (r << (24 - 2 * n)) | (g << (16 - 2 * n)) | (b << (8 - 2 * n))) }
    ImageIO.write(img, "png", new File(s"out_$n.png"))
  }
}

28

C#

哇,这个挑战真的很棒。我在C#中对此进行了测试,并通过Random Walk逻辑使用每种单色在大约3分钟(i7 CPU)中生成了4096x4096图像。

好的,对于代码来说。经过数小时的研究工作,并尝试使用代码中的for循环生成每种HSL颜色后,我决定创建一个平面文件来读取HSL颜色。我要做的是将每种RGB颜色创建到一个列表中,然后按色相,亮度,饱和度排序。然后,我将列表保存到文本文件中。ColorData只是我编写的一小类,它接受RGB颜色并存储等效的HSL。此代码是巨大的RAM占用者。用了大约4GB RAM大声笑。

public class RGB
{
    public double R = 0;
    public double G = 0;
    public double B = 0;
    public override string ToString()
    {
        return "RGB:{" + (int)R + "," + (int)G + "," + (int)B + "}";
    }
}
public class HSL
{
    public double H = 0;
    public double S = 0;
    public double L = 0;
    public override string ToString()
    {
        return "HSL:{" + H + "," + S + "," + L + "}";
    }
}
public class ColorData
{
    public RGB rgb;
    public HSL hsl;
    public ColorData(RGB _rgb)
    {
        rgb = _rgb;
        var _hsl = ColorHelper._color_rgb2hsl(new double[]{rgb.R,rgb.G,rgb.B});
        hsl = new HSL() { H = _hsl[0], S = _hsl[1], L = _hsl[2] };
    }
    public ColorData(double[] _rgb)
    {
        rgb = new RGB() { R = _rgb[0], G = _rgb[1], B = _rgb[2] };
        var _hsl = ColorHelper._color_rgb2hsl(_rgb);
        hsl = new HSL() { H = _hsl[0], S = _hsl[1], L = _hsl[2] };
    }
    public override string ToString()
    {
        return rgb.ToString() + "|" + hsl.ToString();
    }
    public int Compare(ColorData cd)
    {
        if (this.hsl.H > cd.hsl.H)
        {
            return 1;
        }
        if (this.hsl.H < cd.hsl.H)
        {
            return -1;
        }

        if (this.hsl.S > cd.hsl.S)
        {
            return 1;
        }
        if (this.hsl.S < cd.hsl.S)
        {
            return -1;
        }

        if (this.hsl.L > cd.hsl.L)
        {
            return 1;
        }
        if (this.hsl.L < cd.hsl.L)
        {
            return -1;
        }
        return 0;
    }
}
public static class ColorHelper
{


    public static void MakeColorFile(string savePath)
    {
        List<ColorData> Colors = new List<ColorData>();
        System.IO.File.Delete(savePath);

        for (int r = 0; r < 256; r++)
        {
            for (int g = 0; g < 256; g++)
            {
                for (int b = 0; b < 256; b++)
                {
                    double[] rgb = new double[] { r, g, b };
                    ColorData cd = new ColorData(rgb);
                    Colors.Add(cd);
                }
            }
        }
        Colors = Colors.OrderBy(x => x.hsl.H).ThenBy(x => x.hsl.L).ThenBy(x => x.hsl.S).ToList();

        string cS = "";
        using (System.IO.StreamWriter fs = new System.IO.StreamWriter(savePath))
        {

            foreach (var cd in Colors)
            {
                cS = cd.ToString();
                fs.WriteLine(cS);
            }
        }
    }


    public static IEnumerable<Color> NextColorHThenSThenL()
    {
        HashSet<string> used = new HashSet<string>();
        double rMax = 720;
        double gMax = 700;
        double bMax = 700;
        for (double r = 0; r <= rMax; r++)
        {
            for (double g = 0; g <= gMax; g++)
            {
                for (double b = 0; b <= bMax; b++)
                {
                    double h = (r / (double)rMax);
                    double s = (g / (double)gMax);
                    double l = (b / (double)bMax);
                    var c = _color_hsl2rgb(new double[] { h, s, l });
                    Color col = Color.FromArgb((int)c[0], (int)c[1], (int)c[2]);
                    string key = col.R + "-" + col.G + "-" + col.B;
                    if (!used.Contains(key))
                    {
                        used.Add(key);
                        yield return col;
                    }
                    else
                    {
                        continue;
                    }
                }
            }
        }
    }

    public static Color HSL2RGB(double h, double s, double l){
        double[] rgb= _color_hsl2rgb(new double[] { h, s, l });
        return Color.FromArgb((int)rgb[0], (int)rgb[1], (int)rgb[2]);
    }
    public static double[] _color_rgb2hsl(double[] rgb)
    {
        double r = rgb[0]; double g = rgb[1]; double b = rgb[2];
        double min = Math.Min(r, Math.Min(g, b));
        double max = Math.Max(r, Math.Max(g, b));
        double delta = max - min;
        double l = (min + max) / 2.0;
        double s = 0;
        if (l > 0 && l < 1)
        {
            s = delta / (l < 0.5 ? (2 * l) : (2 - 2 * l));
        }
        double h = 0;
        if (delta > 0)
        {
            if (max == r && max != g) h += (g - b) / delta;
            if (max == g && max != b) h += (2 + (b - r) / delta);
            if (max == b && max != r) h += (4 + (r - g) / delta);
            h /= 6;
        } return new double[] { h, s, l };
    }


    public static double[] _color_hsl2rgb(double[] hsl)
    {
        double h = hsl[0];
        double s = hsl[1];
        double l = hsl[2];
        double m2 = (l <= 0.5) ? l * (s + 1) : l + s - l * s;
        double m1 = l * 2 - m2;
        return new double[]{255*_color_hue2rgb(m1, m2, h + 0.33333),
           255*_color_hue2rgb(m1, m2, h),
           255*_color_hue2rgb(m1, m2, h - 0.33333)};
    }


    public static double _color_hue2rgb(double m1, double m2, double h)
    {
        h = (h < 0) ? h + 1 : ((h > 1) ? h - 1 : h);
        if (h * (double)6 < 1) return m1 + (m2 - m1) * h * (double)6;
        if (h * (double)2 < 1) return m2;
        if (h * (double)3 < 2) return m1 + (m2 - m1) * (0.66666 - h) * (double)6;
        return m1;
    }


}

有了这种方式。我编写了一个类来从生成的文件中获取下一个颜色。它使您可以设置色相开始和色相结束。实际上,可以并且应该将其推广到文件首先排序的任何维度。我也意识到,为了提高性能,我可以将RGB值放入文件中,并将每行保持固定的长度。这样,我可以很容易地指定字节偏移量,而不必遍历每一行,直到到达要开始的行为止。但这对我来说并没有什么太大的影响。但是这是那个课

public class HSLGenerator
{

    double hEnd = 1;
    double hStart = 0;

    double colCount = 256 * 256 * 256;

    public static Color ReadRGBColorFromLine(string line)
    {
        string sp1 = line.Split(new string[] { "RGB:{" }, StringSplitOptions.None)[1];
        string sp2 = sp1.Split('}')[0];
        string[] sp3 = sp2.Split(',');
        return Color.FromArgb(Convert.ToInt32(sp3[0]), Convert.ToInt32(sp3[1]), Convert.ToInt32(sp3[2]));
    }
    public IEnumerable<Color> GetNextFromFile(string colorFile)
    {
        int currentLine = -1;
        int startLine = Convert.ToInt32(hStart * colCount);
        int endLine = Convert.ToInt32(hEnd * colCount);
        string line = "";
        using(System.IO.StreamReader sr = new System.IO.StreamReader(colorFile))
        {

            while (!sr.EndOfStream)
            {
                line = sr.ReadLine();
                currentLine++;
                if (currentLine < startLine) //begin at correct offset
                {
                    continue;
                }
                yield return ReadRGBColorFromLine(line);
                if (currentLine > endLine) 
                {
                    break;
                }
            }
    }

    HashSet<string> used = new HashSet<string>();

    public void SetHueLimits(double hueStart, double hueEnd)
    {
        hEnd = hueEnd;
        hStart = hueStart;
    }
}

现在我们有了颜色文件,并且有了读取颜色文件的方法,我们现在可以真正制作图像了。我使用一个发现的类来提高在位图中设置像素的性能,称为LockBitmap。LockBitmap源

我创建了一个小的Vector2类来存储坐标位置

public class Vector2
{
    public int X = 0;
    public int Y = 0;
    public Vector2(int x, int y)
    {
        X = x;
        Y = y;
    }
    public Vector2 Center()
    {
        return new Vector2(X / 2, Y / 2);
    }
    public override string ToString()
    {
        return X.ToString() + "-" + Y.ToString();
    }
}

我还创建了一个名为SearchArea的类,该类有助于查找相邻像素。您可以指定要为其寻找邻居的像素,要在其中搜索的边界以及要搜索的“邻居正方形”的大小。因此,如果大小为3,则表示您正在搜索一个3x3的正方形,指定像素位于中间。

public class SearchArea
{
    public int Size = 0;
    public Vector2 Center;
    public Rectangle Bounds;

    public SearchArea(int size, Vector2 center, Rectangle bounds)
    {
        Center = center;
        Size = size;
        Bounds = bounds;
    }
    public bool IsCoordinateInBounds(int x, int y)
    {
        if (!IsXValueInBounds(x)) { return false; }
        if (!IsYValueInBounds(y)) { return false; }
        return true;

    }
    public bool IsXValueInBounds(int x)
    {
        if (x < Bounds.Left || x >= Bounds.Right) { return false; }
        return true;
    }
    public bool IsYValueInBounds(int y)
    {
        if (y < Bounds.Top || y >= Bounds.Bottom) { return false; }
        return true;
    }

}

这是实际选择下一个邻居的班级。基本上有2种搜索模式。A)完整的正方形,B)仅正方形的周长。这是我进行的优化,以防止在意识到正方形已满后再次搜索整个正方形。DepthMap是进一步的优化,可以防止重复搜索相同的正方形。但是,我没有完全优化它。每次调用GetNeighbors都会始终首先进行全平方搜索。我知道我可以优化它,以便仅在完成初始全角后才进行周长搜索。我只是还没有进行那种优化,即使没有它,代码也相当快。注释掉的“锁定”行是因为我曾经使用过Parallel.ForEach,但是意识到我不得不编写比我大声笑还要多的代码。

public class RandomWalkGenerator
{
    HashSet<string> Visited = new HashSet<string>();
    Dictionary<string, int> DepthMap = new Dictionary<string, int>();
    Rectangle Bounds;
    Random rnd = new Random();
    public int DefaultSearchSize = 3;
    public RandomWalkGenerator(Rectangle bounds)
    {
        Bounds = bounds;
    }
    private SearchArea GetSearchArea(Vector2 center, int size)
    {
        return new SearchArea(size, center, Bounds);
    }

    private List<Vector2> GetNeighborsFullSearch(SearchArea srchArea, Vector2 coord)
    {
        int radius = (int)Math.Floor((double)((double)srchArea.Size / (double)2));
        List<Vector2> pixels = new List<Vector2>();
        for (int rX = -radius; rX <= radius; rX++)
        {
            for (int rY = -radius; rY <= radius; rY++)
            {
                if (rX == 0 && rY == 0) { continue; } //not a new coordinate
                int x = rX + coord.X;
                int y = rY + coord.Y;
                if (!srchArea.IsCoordinateInBounds(x, y)) { continue; }
                var key = x + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, y));
                    }
                }
            }
        }
        if (pixels.Count == 0)
        {
            int depth = 0;
            string vecKey = coord.ToString();
            if (!DepthMap.ContainsKey(vecKey))
            {
                DepthMap.Add(vecKey, depth);
            }
            else
            {
                depth = DepthMap[vecKey];
            }

            var size = DefaultSearchSize + 2 * depth;
            var sA = GetSearchArea(coord, size);
            pixels = GetNeighborsPerimeterSearch(sA, coord, depth);
        }
        return pixels;
    }
    private Rectangle GetBoundsForPerimeterSearch(SearchArea srchArea, Vector2 coord)
    {
        int radius = (int)Math.Floor((decimal)(srchArea.Size / 2));
        Rectangle r = new Rectangle(-radius + coord.X, -radius + coord.Y, srchArea.Size, srchArea.Size);
        return r;
    }
    private List<Vector2> GetNeighborsPerimeterSearch(SearchArea srchArea, Vector2 coord, int depth = 0)
    {
        string vecKey = coord.ToString();
        if (!DepthMap.ContainsKey(vecKey))
        {
            DepthMap.Add(vecKey, depth);
        }
        else
        {
            DepthMap[vecKey] = depth;
        }
        Rectangle bounds = GetBoundsForPerimeterSearch(srchArea, coord);
        List<Vector2> pixels = new List<Vector2>();
        int depthMax = 1500;

        if (depth > depthMax)
        {
            return pixels;
        }

        int yTop = bounds.Top;
        int yBot = bounds.Bottom;

        //left to right scan
        for (int x = bounds.Left; x < bounds.Right; x++)
        {

            if (srchArea.IsCoordinateInBounds(x, yTop))
            {
                var key = x + "-" + yTop;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, yTop));
                    }
                }
            }
            if (srchArea.IsCoordinateInBounds(x, yBot))
            {
                var key = x + "-" + yBot;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, yBot));
                    }
                }
            }
        }

        int xLeft = bounds.Left;
        int xRight = bounds.Right;
        int yMin = bounds.Top + 1;
        int yMax = bounds.Bottom - 1;
        //top to bottom scan
        for (int y = yMin; y < yMax; y++)
        {
            if (srchArea.IsCoordinateInBounds(xLeft, y))
            {
                var key = xLeft + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(xLeft, y));
                    }
                }
            }
            if (srchArea.IsCoordinateInBounds(xRight, y))
            {
                var key = xRight + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(xRight, y));
                    }
                }
            }
        }

        if (pixels.Count == 0)
        {
            var size = srchArea.Size + 2;
            var sA = GetSearchArea(coord, size);
            pixels = GetNeighborsPerimeterSearch(sA, coord, depth + 1);
        }
        return pixels;
    }
    private List<Vector2> GetNeighbors(SearchArea srchArea, Vector2 coord)
    {
        return GetNeighborsFullSearch(srchArea, coord);
    }
    public Vector2 ChooseNextNeighbor(Vector2 coord)
    {
        SearchArea sA = GetSearchArea(coord, DefaultSearchSize);
        List<Vector2> neighbors = GetNeighbors(sA, coord);
        if (neighbors.Count == 0)
        {
            return null;
        }
        int idx = rnd.Next(0, neighbors.Count);
        Vector2 elm = neighbors.ElementAt(idx);
        string key = elm.ToString();
        // lock (Visited)
        {
            Visited.Add(key);
        }
        return elm;
    }
}

好的,所以现在是创建图像的类

public class RandomWalk
{
    Rectangle Bounds;
    Vector2 StartPath = new Vector2(0, 0);
    LockBitmap LockMap;
    RandomWalkGenerator rwg;
    public int RandomWalkSegments = 1;
    string colorFile = "";

    public RandomWalk(int size, string _colorFile)
    {
        colorFile = _colorFile;
        Bounds = new Rectangle(0, 0, size, size);
        rwg = new RandomWalkGenerator(Bounds);
    }
    private void Reset()
    {
        rwg = new RandomWalkGenerator(Bounds);
    }
    public void CreateImage(string savePath)
    {
        Reset();
        Bitmap bmp = new Bitmap(Bounds.Width, Bounds.Height);
        LockMap = new LockBitmap(bmp);
        LockMap.LockBits();
        if (RandomWalkSegments == 1)
        {
            RandomWalkSingle();
        }
        else
        {
            RandomWalkMulti(RandomWalkSegments);
        }
        LockMap.UnlockBits();
        bmp.Save(savePath);

    }
    public void SetStartPath(int X, int Y)
    {
        StartPath.X = X;
        StartPath.Y = Y;
    }
    private void RandomWalkMulti(int buckets)
    {

        int Buckets = buckets;
        int PathsPerSide = (Buckets + 4) / 4;
        List<Vector2> Positions = new List<Vector2>();

        var w = Bounds.Width;
        var h = Bounds.Height;
        var wInc = w / Math.Max((PathsPerSide - 1),1);
        var hInc = h / Math.Max((PathsPerSide - 1),1);

        //top
        for (int i = 0; i < PathsPerSide; i++)
        {
            var x = Math.Min(Bounds.Left + wInc * i, Bounds.Right - 1);
            Positions.Add(new Vector2(x, Bounds.Top));
        }
        //bottom
        for (int i = 0; i < PathsPerSide; i++)
        {
            var x = Math.Max(Bounds.Right -1 - wInc * i, 0);
            Positions.Add(new Vector2(x, Bounds.Bottom - 1));
        }
        //right and left
        for (int i = 1; i < PathsPerSide - 1; i++)
        {
            var y = Math.Min(Bounds.Top + hInc * i, Bounds.Bottom - 1);
            Positions.Add(new Vector2(Bounds.Left, y));
            Positions.Add(new Vector2(Bounds.Right - 1, y));
        }
        Positions = Positions.OrderBy(x => Math.Atan2(x.X, x.Y)).ToList();
        double cnt = 0;
        List<IEnumerator<bool>> _execs = new List<IEnumerator<bool>>();
        foreach (Vector2 startPath in Positions)
        {
            double pct = cnt / (Positions.Count);
            double pctNext = (cnt + 1) / (Positions.Count);

            var enumer = RandomWalkHueSegment(pct, pctNext, startPath).GetEnumerator();

            _execs.Add(enumer);
            cnt++;
        }

        bool hadChange = true;
        while (hadChange)
        {
            hadChange = false;
            foreach (var e in _execs)
            {
                if (e.MoveNext())
                {
                    hadChange = true;
                }
            }
        }

    }
    private IEnumerable<bool> RandomWalkHueSegment(double hueStart, double hueEnd, Vector2 startPath)
    {
        var colors = new HSLGenerator();
        colors.SetHueLimits(hueStart, hueEnd);
        var colorFileEnum = colors.GetNextFromFile(colorFile).GetEnumerator();
        Vector2 coord = new Vector2(startPath.X, startPath.Y);
        LockMap.SetPixel(coord.X, coord.Y, ColorHelper.HSL2RGB(0, 0, 0));

        while (true)
        {
            if (!colorFileEnum.MoveNext())
            {
                break;
            }
            var rgb = colorFileEnum.Current;
            coord = ChooseNextNeighbor(coord);
            if (coord == null)
            {
                break;
            }
            LockMap.SetPixel(coord.X, coord.Y, rgb);
            yield return true;

        }
    }
    private void RandomWalkSingle()
    {
        Vector2 coord = new Vector2(StartPath.X, StartPath.Y);
        LockMap.SetPixel(coord.X, coord.Y, ColorHelper.HSL2RGB(0, 0, 0));
        int cnt = 1;
        var colors = new HSLGenerator();
        var colorFileEnum = colors.GetNextFromFile(colorFile).GetEnumerator();
        while (true)
        {
            if (!colorFileEnum.MoveNext())
            {
                return;
            }
            var rgb = colorFileEnum.Current;
            var newCoord = ChooseNextNeighbor(coord);
            coord = newCoord;
            if (newCoord == null)
            {
                return;
            }
            LockMap.SetPixel(newCoord.X, newCoord.Y, rgb);
            cnt++;

        }

    }

    private Vector2 ChooseNextNeighbor(Vector2 coord)
    {
        return rwg.ChooseNextNeighbor(coord);
    }


}

这是一个示例实现:

class Program
{
    static void Main(string[] args)
    {
        {
           // ColorHelper.MakeColorFile();
          //  return;
        }
        string colorFile = "colors.txt";
        var size = new Vector2(1000,1000);
        var ctr = size.Center();
        RandomWalk r = new RandomWalk(size.X,colorFile);
        r.RandomWalkSegments = 8;
        r.SetStartPath(ctr.X, ctr.Y);
        r.CreateImage("test.bmp");

    }
}

如果RandomWalkSegments = 1,则基本上从您告诉它的地方开始走,并从文件中的第一个第一个颜色开始。

这不是我接受的最干净的代码,但是它运行得非常快!

裁剪输出

3条路

128条路径

编辑:

因此,我一直在学习OpenGL和着色器。我使用2个简单的着色器脚本在GPU上快速发光的每种颜色生成了4096x4096。输出很无聊,但认为有人可能会发现这很有趣,并提出了一些很酷的想法:

顶点着色器

attribute vec3 a_position;
varying vec2 vTexCoord;
   void main() {
      vTexCoord = (a_position.xy + 1) / 2;
      gl_Position = vec4(a_position, 1);
  }

碎片着色器

void main(void){
    int num = int(gl_FragCoord.x*4096.0 + gl_FragCoord.y);
    int h = num % 256;
    int s = (num/256) % 256;
    int l = ((num/256)/256) % 256;
    vec4 hsl = vec4(h/255.0,s/255.0,l/255.0,1.0);
    gl_FragColor = hsl_to_rgb(hsl); // you need to implement a conversion method
}

编辑(10/15/16):仅想显示遗传算法的概念证明。我仍然在24小时后以100x100的随机颜色集运行此代码,但是到目前为止,输出还是很漂亮的!在此处输入图片说明

编辑(10/26/16):我已经运行遗传算法代码12天了,并且仍在优化输出。它基本上收敛到某个局部最小值,但显然仍在寻找更多改进:在此处输入图片说明

编辑:17/12/17-我编写了一个新的随机行走算法-基本上,您指定了多个“行走者”,但不是随机行走,而是随机选择另一个行走者并避免它们(选择距离最远的下一个可用像素) )-或朝他们走去(选择距离他们最近的下一个可用像素)。此处是一个示例灰度输出(我将着色连接后,将进行完整的4096x4096彩色渲染!):在此处输入图片说明


4
有点迟了,但是欢迎来到PPCG!这是一篇出色的第一篇文章。
意大利面条2015年

1
谢谢!我期待完成更多挑战!最近我一直在做更多的图像编码工作,这是我的新爱好
applejacks01 2016年

哇,真棒!我很高兴今天回到这篇文章,并查看了所有以后的内容。
詹森·C

谢谢!我实际上正在做一些遗传算法编码,以产生有趣的渐变。基本上,采用10000种颜色,形成100x100的网格。对于每个像素,获取相邻像素。对于每个,获取CIEDE2000距离。总结一下。总计所有10000像素。遗传算法尝试减少该总和。它的速度很慢,但是对于20x20的图像,其输出确实很有趣
applejacks01 '16

我特别喜欢此解决方案的输出。
r_alex_hall

22

HTML5 canvas + JavaScript

我称之为randoGraph,您可以在这里创建任意数量的

一些例子:

例子1

例子2

例子3

例子4

例子5

例子6

例子7

例如,在Firefox中,您可以右键单击画布(完成后)并将其另存为image。由于某些浏览器的内存限制,产生4096x4096图像是一种问题。

这个想法很简单,但是每个图像都是唯一的。首先,我们创建调色板。然后从X点开始,我们从调色板中选择随机的颜色并为其定位(每次选择一种颜色时,将从调色板中将其删除),并记录下将其放置在不放置在下一个像素相同位置的位置。

对于与之相切的每个像素,我们创建许多可能的颜色(X),然后选择与该像素最相关的颜色。一直进行到图像完成为止。

HTML代码

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="el">
<head>
<script type="text/javascript" src="randoGraph.js"></script>
</head>
<body>
    <canvas id="randoGraphCanvas"></canvas> 
</body>
</html>

还有randoGraph.js的JavaScript

window.onload=function(){
    randoGraphInstance = new randoGraph("randoGraphCanvas",256,128,1,1);
    randoGraphInstance.setRandomness(500, 0.30, 0.11, 0.59);
    randoGraphInstance.setProccesses(10);
    randoGraphInstance.init(); 
}

function randoGraph(canvasId,width,height,delay,startings)
{
    this.pixels = new Array();
    this.colors = new Array(); 
    this.timeouts = new Array(); 
    this.randomFactor = 500;
    this.redFactor = 0.30;
    this.blueFactor = 0.11;
    this.greenFactor  = 0.59;
    this.processes = 1;
    this.canvas = document.getElementById(canvasId); 
    this.pixelsIn = new Array(); 
    this.stopped = false;

    this.canvas.width = width;
    this.canvas.height = height;
    this.context = this.canvas.getContext("2d");
    this.context.clearRect(0,0, width-1 , height-1);
    this.shadesPerColor = Math.pow(width * height, 1/3);
    this.shadesPerColor = Math.round(this.shadesPerColor * 1000) / 1000;

    this.setRandomness = function(randomFactor,redFactor,blueFactor,greenFactor)
    {
        this.randomFactor = randomFactor;
        this.redFactor = redFactor;
        this.blueFactor = blueFactor;
        this.greenFactor = greenFactor;
    }

    this.setProccesses = function(processes)
    {
        this.processes = processes;
    }

    this.init = function()
    {
        if(this.shadesPerColor > 256 || this.shadesPerColor % 1 > 0) 
        { 
            alert("The dimensions of the image requested to generate are invalid. The product of width multiplied by height must be a cube root of a integer number up to 256."); 
        }
        else 
        {
            var steps = 256 / this.shadesPerColor;
            for(red = steps / 2; red <= 255;)
            {
                for(blue = steps / 2; blue <= 255;)
                {
                    for(green = steps / 2; green <= 255;)
                    {   
                        this.colors.push(new Color(Math.round(red),Math.round(blue),Math.round(green)));
                        green = green + steps;
                    }
                    blue = blue + steps; 
                }
                red = red + steps; 
            }   

            for(var i = 0; i < startings; i++)
            {
                var color = this.colors.splice(randInt(0,this.colors.length - 1),1)[0];
                var pixel = new Pixel(randInt(0,width - 1),randInt(0,height - 1),color);
                this.addPixel(pixel);       
            }

            for(var i = 0; i < this.processes; i++)
            {
                this.timeouts.push(null);
                this.proceed(i);
            }
        }
    }

    this.proceed = function(index) 
    { 
        if(this.pixels.length > 0)
        {
            this.proceedPixel(this.pixels.splice(randInt(0,this.pixels.length - 1),1)[0]);
            this.timeouts[index] = setTimeout(function(that){ if(!that.stopped) { that.proceed(); } },this.delay,this);
        }
    }

    this.proceedPixel = function(pixel)
    {
        for(var nx = pixel.getX() - 1; nx < pixel.getX() + 2; nx++)
        {
            for(var ny = pixel.getY() - 1; ny < pixel.getY() + 2; ny++)
            {
                if(! (this.pixelsIn[nx + "x" + ny] == 1 || ny < 0 || nx < 0 || nx > width - 1 || ny > height - 1 || (nx == pixel.getX() && ny == pixel.getY())) )
                {
                    var color = this.selectRelevantColor(pixel.getColor());
                    var newPixel = new Pixel(nx,ny,color);
                    this.addPixel(newPixel);
                }
            }
        }   
    }

    this.selectRelevantColor = function(color)
    {
        var relevancies = new Array(); 
        var relColors = new Array(); 
        for(var i = 0; i < this.randomFactor && i < this.colors.length; i++)
        {
            var index = randInt(0,this.colors.length - 1);
            var c = this.colors[index];
            var relevancy = Math.pow( ((c.getRed()-color.getRed()) * this.redFactor) , 2)
            + Math.pow( ((c.getBlue()-color.getBlue()) * this.blueFactor), 2)
            + Math.pow( ((c.getGreen()-color.getGreen()) * this.greenFactor) , 2);
            relevancies.push(relevancy); 
            relColors[relevancy+"Color"] = index;
        }
        return this.colors.splice(relColors[relevancies.min()+"Color"],1)[0]
    }

    this.addPixel = function(pixel)
    {
        this.pixels.push(pixel);
        this.pixelsIn[pixel.getX() + "x" + pixel.getY() ] = 1;
        var color = pixel.getColor();
        this.context.fillStyle = "rgb("+color.getRed()+","+color.getBlue()+","+color.getGreen()+")";
        this.context.fillRect( pixel.getX(), pixel.getY(), 1, 1);   
    }

    var toHex = function toHex(num) 
    {
        num = Math.round(num);
        var hex = num.toString(16);
        return hex.length == 1 ? "0" + hex : hex;
    }

    this.clear = function()
    {
        this.stopped = true;
    }
}

function Color(red,blue,green)
{   
    this.getRed = function() { return red; } 
    this.getBlue = function() { return blue; } 
    this.getGreen = function() { return green; } 
}

function Pixel(x,y,color)
{   
    this.getX = function() { return x; } 
    this.getY = function() { return y; } 
    this.getColor = function() { return color; } 
}


function randInt(min, max) 
{
    return Math.floor(Math.random() * (max - min + 1)) + min;
}


// @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/min
Array.prototype.min = function() 
{
      return Math.min.apply(null, this);
};

// @see http://stackoverflow.com/questions/5223/length-of-javascript-object-ie-associative-array
Object.size = function(obj) 
{
    var size = 0, key;
    for (key in obj) {
        if (obj.hasOwnProperty(key)) size++;
    }
    return size;
};

很好,但看起来像fejesjocoC#答案。只是偶然吗?
AL

1
算法在这里,任何人都可以阅读和理解,这是完全不同的。在fejesjoco的C#答案发布后,此答案被宣布为获胜者,其动机是其结果多么出色。然后我想到了一种处理和选择邻居颜色的完全不同的方法,就是这样。当然,这两个答案都具有相同的依据,例如沿可见光谱均匀使用的颜色分布,相关颜色的概念以及起始点,也许使这些依据受挫,有人可能会认为所生成的图像在某些情况下具有相似性。
konstantinosX 2014年

好的,如果您认为我在批评您的答案,对不起。我只是想知道您是否受到fejesjoco的回答的启发,因为结果输出看起来相似。
AL

1
“在构造函数内部而不是使用原型链来定义类的方法确实效率很低,特别是如果多次使用该类。” Patrick Roberts说道。您是否有引用示例来验证这一点?,我真诚地想知道此声明是否有任何根据(以便停止使用),它是什么。
konstantinosX

2
关于原型的使用:它的工作方式与静态方法大致相同。当您在对象字面量中定义了函数时,创建的每个新对象也必须创建该函数的新副本,并将其与该对象实例一起存储(因此,1600万个彩色对象表示该函数中有1600万个完全相同的副本)。记忆)。相比之下,使用原型将只创建一次,以与“类”关联,而不是与对象关联。这具有明显的内存优势以及潜在的速度优势。
Mwr247

20

蟒蛇

所以这是我在python中的解决方案,制作它大约需要一个小时,因此可能需要做一些优化:

import PIL.Image as Image
from random import shuffle
import math

def mulColor(color, factor):
    return (int(color[0]*factor), int(color[1]*factor), int(color[2]*factor))

def makeAllColors(arg):
    colors = []
    for r in range(0, arg):
        for g in range(0, arg):
            for b in range(0, arg):
                colors.append((r, g, b))
    return colors

def distance(color1, color2):
    return math.sqrt(pow(color2[0]-color1[0], 2) + pow(color2[1]-color1[1], 2) + pow(color2[2]-color1[2], 2))

def getClosestColor(to, colors):
    closestColor = colors[0]
    d = distance(to, closestColor)
    for color in colors:
        if distance(to, color) < d:
            closestColor = color
            d = distance(to, closestColor)
    return closestColor

imgsize = (256, 128)
#imgsize = (10, 10)
colors = makeAllColors(32)
shuffle(colors)
factor = 255.0/32.0
img = Image.new("RGB", imgsize, "white")
#start = (imgsize[0]/4, imgsize[1]/4)
start = (imgsize[0]/2, 0)
startColor = colors.pop()
img.putpixel(start, mulColor(startColor, factor))

#color = getClosestColor(startColor, colors)
#img.putpixel((start[0]+1, start[1]), mulColor(color, factor))

edgePixels = [(start, startColor)]
donePositions = [start]
for pixel in edgePixels:
    if len(colors) > 0:
        color = getClosestColor(pixel[1], colors)
    m = [(pixel[0][0]-1, pixel[0][1]), (pixel[0][0]+1, pixel[0][2]), (pixel[0][0], pixel[0][3]-1), (pixel[0][0], pixel[0][4]+1)]
    if len(donePositions) >= imgsize[0]*imgsize[1]:
    #if len(donePositions) >= 100:
        break
    for pos in m:
        if (not pos in donePositions):
            if not (pos[0]<0 or pos[1]<0 or pos[0]>=img.size[0] or pos[1]>=img.size[1]):
                img.putpixel(pos, mulColor(color, factor))
                #print(color)
                donePositions.append(pos)
                edgePixels.append((pos, color))
                colors.remove(color)
                if len(colors) > 0:
                    color = getClosestColor(pixel[1], colors)
    print((len(donePositions) * 1.0) / (imgsize[0]*imgsize[1]))
print len(donePositions)
img.save("colors.png")

以下是一些示例输出:

在此处输入图片说明 在此处输入图片说明 在此处输入图片说明 在此处输入图片说明 在此处输入图片说明


1
看起来像是一些疯狂的声音波形
Mark Jeronimus 2014年

19

爪哇

我决定尝试一下这个挑战。我对另一个代码高尔夫球的回答感到鼓舞。我的程序生成难看的图像,但是它们具有所有颜色。

另外,我第一次打高尔夫球。:)

(4k图像太大,无法达到较小的上传速度,我尝试上传一个,但一小时后还没有上传。您可以生成自己的图像。)

特写:

在我的计算机上在70秒内生成图像,生成时大约需要1.5GB的内存

Main.java

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Random;

import javax.imageio.ImageIO;


public class Main {
    static char[][] colors = new char[4096 * 4096][3];
    static short[][] pixels = new short[4096 * 4096][2];

    static short[][] iterMap = new short[4096][4096];  

    public static int mandel(double re0, double im0, int MAX_ITERS) {
        double re = re0;
        double im = im0;
        double _r;
        double _i;
        double re2;
        double im2;
        for (int iters = 0; iters < MAX_ITERS; iters++) {
            re2 = re * re;
            im2 = im * im;
            if (re2 + im2 > 4.0) {
                return iters;
            }
            _r = re;
            _i = im;
            _r = re2 - im2;
            _i = 2 * (re * im);
            _r += re0;
            _i += im0;
            re = _r;
            im = _i;
        }
        return MAX_ITERS;
    }

    static void shuffleArray(Object[] ar) {
        Random rnd = new Random();
        for (int i = ar.length - 1; i > 0; i--) {
          int index = rnd.nextInt(i + 1);
          // Simple swap
          Object a = ar[index];
          ar[index] = ar[i];
          ar[i] = a;
        }
      }

    public static void main(String[] args) {
        long startTime = System.nanoTime();

        System.out.println("Generating colors...");

        for (int i = 0; i < 4096 * 4096; i++) {
            colors[i][0] = (char)((i >> 16) & 0xFF); // Red
            colors[i][1] = (char)((i >> 8) & 0xFF);  // Green
            colors[i][2] = (char)(i & 0xFF);         // Blue
        }

        System.out.println("Sorting colors...");

        //shuffleArray(colors); // Not needed

        Arrays.sort(colors, new Comparator<char[]>() {
            @Override
            public int compare(char[] a, char[] b) {
                return (a[0] + a[1] + a[2]) - (b[0] + b[1] + b[2]);
            }
        });

        System.out.println("Generating fractal...");

        for (int y = -2048; y < 2048; y++) {
            for (int x = -2048; x < 2048; x++) {
                short iters = (short) mandel(x / 1024.0, y / 1024.0, 1024);
                iterMap[x + 2048][y + 2048] = iters;
            }
        }

        System.out.println("Organizing pixels in the image...");

        for (short x = 0; x < 4096; x++) {
            for (short y = 0; y < 4096; y++) {
                pixels[x * 4096 + y][0] = x;
                pixels[x * 4096 + y][1] = y;
            }
        }

        shuffleArray(pixels);

        Arrays.sort(pixels, new Comparator<short[]>() {
            @Override
            public int compare(short[] a, short[] b) {
                return iterMap[b[0]][b[1]] - iterMap[a[0]][a[1]];
            }
        });

        System.out.println("Writing image to BufferedImage...");

        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        Graphics2D g = img.createGraphics();

        for (int i = 0; i < 4096 * 4096; i++) {
            g.setColor(new Color(colors[i][0], colors[i][1], colors[i][2]));
            g.fillRect(pixels[i][0], pixels[i][1], 1, 1);
        }

        g.dispose();

        System.out.println("Writing image to file...");

        File imageFile = new File("image.png");

        try {
            ImageIO.write(img, "png", imageFile);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

        System.out.println("Done!");
        System.out.println("Took " + ((System.nanoTime() - startTime) / 1000000000.) + " seconds.");
        System.out.println();
        System.out.println("The result is saved in " + imageFile.getAbsolutePath());

    }

}

18

Mathematica

colors = Table[
r = y*256 + x; {BitAnd[r, 2^^111110000000000]/32768., 
BitAnd[r, 2^^1111100000]/1024., BitAnd[r, 2^^11111]/32.}, {y, 0, 
127}, {x, 0, 255}];
SeedRandom[1337];
maxi = 5000000;
Monitor[For[i = 0, i < maxi, i++,
x1 = RandomInteger[{2, 255}];
x2 = RandomInteger[{2, 255}];
y1 = RandomInteger[{2, 127}];
y2 = RandomInteger[{2, 127}];
c1 = colors[[y1, x1]];
c2 = colors[[y2, x2]];
ca1 = (colors[[y1 - 1, x1]] + colors[[y1, x1 - 1]] + 
  colors[[y1 + 1, x1]] + colors[[y1, x1 + 1]])/4.;
ca2 = (colors[[y2 - 1, x2]] + colors[[y2, x2 - 1]] + 
  colors[[y2 + 1, x2]] + colors[[y2, x2 + 1]])/4.;
d1 = Abs[c1[[1]] - ca1[[1]]] + Abs[c1[[2]] - ca1[[2]]] + 
Abs[c1[[3]] - ca1[[3]]];
d1p = Abs[c2[[1]] - ca1[[1]]] + Abs[c2[[2]] - ca1[[2]]] + 
Abs[c2[[3]] - ca1[[3]]];
d2 = Abs[c2[[1]] - ca2[[1]]] + Abs[c2[[2]] - ca2[[2]]] + 
Abs[c2[[3]] - ca2[[3]]];
d2p = Abs[c1[[1]] - ca2[[1]]] + Abs[c1[[2]] - ca2[[2]]] + 
Abs[c1[[3]] - ca2[[3]]];
If[(d1p + d2p < 
  d1 + d2) || (RandomReal[{0, 1}] < 
   Exp[-Log10[i]*(d1p + d2p - (d1 + d2))] && i < 1000000),
temp = colors[[y1, x1]];
colors[[y1, x1]] = colors[[y2, x2]];
colors[[y2, x2]] = temp
]
], ProgressIndicator[i, {1, maxi}]]
Image[colors]

结果(2x):

256x128 2x

原始256x128图像

编辑:

通过将Log10 [i]替换为Log10 [i] / 5,您将获得: 在此处输入图片说明

上面的代码与模拟退火有关。通过这种方式可以看到,在开始的10 ^ 6步中,第二个图像的“温度”更高。较高的“温度”会导致像素之间出现更多的排列,而在第一个图像中,有序图像的结构仍然略显可见。


17

的JavaScript

还是一个学生,我还是第一次发布,所以我的代码可能很乱,我不是100%确定我的图片具有所有需要的颜色,但是我对结果感到非常满意,所以我认为我会发布它们。

我知道比赛已经结束,但是我真的很喜欢这些比赛的结果,而且我一直很喜欢递归回溯产生的迷宫外观,所以我认为看看如果放置彩色像素会是什么样子可能会很酷。因此,我首先生成数组中的所有颜色,然后进行递归回溯,同时从数组中弹出颜色。

这是我的JSFiddle http://jsfiddle.net/Kuligoawesome/3VsCu/

// Global variables
const FPS = 60;// FrameRate
var canvas = null;
var ctx = null;

var bInstantDraw = false;
var MOVES_PER_UPDATE = 50; //How many pixels get placed down
var bDone = false;
var width; //canvas width
var height; //canvas height
var colorSteps = 32;

var imageData;
var grid;
var colors;

var currentPos;
var prevPositions;

// This is called when the page loads
function Init()
{
    canvas = document.getElementById('canvas'); // Get the HTML element with the ID of 'canvas'
    width = canvas.width;
    height = canvas.height;
    ctx = canvas.getContext('2d'); // This is necessary, but I don't know exactly what it does

    imageData = ctx.createImageData(width,height); //Needed to do pixel manipulation

    grid = []; //Grid for the labyrinth algorithm
    colors = []; //Array of all colors
    prevPositions = []; //Array of previous positions, used for the recursive backtracker algorithm

    for(var r = 0; r < colorSteps; r++)
    {
        for(var g = 0; g < colorSteps; g++)
        {
            for(var b = 0; b < colorSteps; b++)
            {
                colors.push(new Color(r * 255 / (colorSteps - 1), g * 255 / (colorSteps - 1), b * 255 / (colorSteps - 1)));
                //Fill the array with all colors
            }
        }
    }

    colors.sort(function(a,b)
    {
        if (a.r < b.r)
            return -1;
        if (a.r > b.r)
            return 1;
        if (a.g < b.g)
            return -1;
        if (a.g > b.g)
            return 1;
        if (a.b < b.b)
            return -1;
        if (a.b > b.b)
            return 1;
        return 0;
    });

    for(var x = 0; x < width; x++)
    {
        grid.push(new Array());
        for(var y = 0; y < height; y++)
        {
            grid[x].push(0); //Set up the grid
            //ChangePixel(imageData, x, y, colors[x + (y * width)]);
        }
    }

    currentPos = new Point(Math.floor(Math.random() * width),Math.floor(Math.random() * height)); 

    grid[currentPos.x][currentPos.y] = 1;
    prevPositions.push(currentPos);
    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop());

    if(bInstantDraw)
    {
        do
        {
            var notMoved = true;
            while(notMoved)
            {
                var availableSpaces = CheckForSpaces(grid);

                if(availableSpaces.length > 0)
                {
                    var test = availableSpaces[Math.floor(Math.random() * availableSpaces.length)];
                    prevPositions.push(currentPos);
                    currentPos = test;
                    grid[currentPos.x][currentPos.y] = 1;
                    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop());
                    notMoved = false;
                }
                else
                {
                    if(prevPositions.length != 0)
                    {
                        currentPos = prevPositions.pop();
                    }
                    else
                    {
                        break;
                    }
                }
            }
        }
        while(prevPositions.length > 0)

        ctx.putImageData(imageData,0,0);
    }
    else
    {
        setInterval(GameLoop, 1000 / FPS);
    }
}

// Main program loop
function GameLoop()
{
    Update();
    Draw();
}

// Game logic goes here
function Update()
{
    if(!bDone)
    {
        var counter = MOVES_PER_UPDATE;
        while(counter > 0) //For speeding up the drawing
        {
            var notMoved = true;
            while(notMoved)
            {
                var availableSpaces = CheckForSpaces(grid); //Find available spaces

                if(availableSpaces.length > 0) //If there are available spaces
                {
                    prevPositions.push(currentPos); //add old position to prevPosition array
                    currentPos = availableSpaces[Math.floor(Math.random() * availableSpaces.length)]; //pick a random available space
                    grid[currentPos.x][currentPos.y] = 1; //set that space to filled
                    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop()); //pop color of the array and put it in that space
                    notMoved = false;
                }
                else
                {
                    if(prevPositions.length != 0)
                    {
                        currentPos = prevPositions.pop(); //pop to previous position where spaces are available
                    }
                    else
                    {
                        bDone = true;
                        break;
                    }
                }
            }
            counter--;
        }
    }
}
function Draw()
{
    // Clear the screen
    ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
    ctx.fillStyle='#000000';
    ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);

    ctx.putImageData(imageData,0,0);
}

function CheckForSpaces(inGrid) //Checks for available spaces then returns back all available spaces
{
    var availableSpaces = [];

    if(currentPos.x > 0 && inGrid[currentPos.x - 1][currentPos.y] == 0)
    {
        availableSpaces.push(new Point(currentPos.x - 1, currentPos.y));
    }

    if(currentPos.x < width - 1 && inGrid[currentPos.x + 1][currentPos.y] == 0)
    {
        availableSpaces.push(new Point(currentPos.x + 1, currentPos.y));
    }

    if(currentPos.y > 0 && inGrid[currentPos.x][currentPos.y - 1] == 0)
    {
        availableSpaces.push(new Point(currentPos.x, currentPos.y - 1));
    }

    if(currentPos.y < height - 1 && inGrid[currentPos.x][currentPos.y + 1] == 0)
    {
        availableSpaces.push(new Point(currentPos.x, currentPos.y + 1));
    }

    return availableSpaces;
}

function ChangePixel(data, x, y, color) //Quick function to simplify changing pixels
{
    data.data[((x + (y * width)) * 4) + 0] = color.r;
    data.data[((x + (y * width)) * 4) + 1] = color.g;
    data.data[((x + (y * width)) * 4) + 2] = color.b;
    data.data[((x + (y * width)) * 4) + 3] = 255;
}

/*Needed Classes*/
function Point(xIn, yIn)
{
    this.x = xIn;
    this.y = yIn;
}

function Color(r, g, b)
{
    this.r = r;
    this.g = g;
    this.b = b;
    this.hue = Math.atan2(Math.sqrt(3) * (this.g - this.b), 2 * this.r - this.g, this.b);
    this.min = Math.min(this.r, this.g);
    this.min = Math.min(this.min, this.b);
    this.min /= 255;
    this.max = Math.max(this.r, this.g);
    this.max = Math.max(this.max, this.b);
    this.max /= 255;
    this.luminance = (this.min + this.max) / 2;
    if(this.min === this.max)
    {
        this.saturation = 0;
    }
    else if(this.luminance < 0.5)
    {
        this.saturation = (this.max - this.min) / (this.max + this.min);
    }
    else if(this.luminance >= 0.5)
    {
        this.saturation = (this.max - this.min) / (2 - this.max - this.min);
    }
}

256x128图片,颜色按红色->绿色->蓝色排序
RGB排序的颜色

256x128图片,颜色按蓝色->绿色->红色排序
BGR分类颜色

256x128图片,颜色按色调->亮度->饱和度排序
HLS分类颜色

最后生成一个GIF
彩色迷宫GIF


您的颜色被裁剪到最亮的区域,从而导致重复。更改r * Math.ceil(255 / (colorSteps - 1)r * Math.floor(255 / (colorSteps - 1),甚至更好:(r * 255 / (colorSteps - 1)未经测试,因为您没有提供jsfiddle)
Mark Jeronimus 2014年

糟糕,是的,我感觉会导致问题,希望现在已解决,并为缺少jsfiddle感到抱歉(我不知道它的存在!)谢谢!
Kuligoawesome 2014年

我喜欢这种有序的混沌/噪声输出,以及另一种产生类似输出的解决方案。
r_alex_hall

17

C#

因此,我开始从事这项有趣的练习,最后得到的输出至少对我来说看起来很整洁。我(至少)大多数解决方案的主要区别在于,我生成的颜色正好是开始时所需的颜色数量,并且使生成的颜色从纯白色到纯黑色均匀地隔开。我还设置了向内旋转的颜色,并根据已设置的所有邻居之间的平均色差选择下一个颜色。

这是到目前为止我已经产生的一个小样本输出,我正在4K渲染上工作,但是我希望它可能需要一天以上的时间才能完成。

这是256x128规格输出的示例:

规格渲染

一些渲染时间仍然合理的较大图像:

以360 x 240渲染

以360 x 240的第二次运行产生的图像更加平滑

以360 x 240渲染#2

提高性能后,我能够运行耗时2天的高清渲染,但我还没有放弃4k渲染,但可能要花几周的时间。

高清渲染

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;

namespace SandBox
{
    class Program
    {
        private static readonly List<Point> directions = new List<Point>
        {
            new Point(1, 0),
            new Point(0, 1),
            new Point(-1, 0),
            new Point(0, -1)
        };

        static void Main(string[] args)
        {
            if (args.Length != 2)
            {
                HelpFile();
                return;
            }
            try
            {
                var config = new ColorGeneratorConfig
                {
                    XLength = int.Parse(args[0]),
                    YLength = int.Parse(args[1])
                };

                Console.WriteLine("Starting image generation with:");
                Console.WriteLine($"\tDimensions:\t\t{config.XLength} X {config.YLength}");
                Console.WriteLine($"\tSteps Per Channel:\t{config.NumOfSteps}");
                Console.WriteLine($"\tStep Size:\t\t{config.ColorStep}");
                Console.WriteLine($"\tSteps to Skip:\t\t{config.StepsToSkip}\n");

                var runner = new TaskRunner();
                var colors = runner.Run(() => GenerateColorList(config), "color selection");
                var pixels = runner.Run(() => BuildPixelArray(colors, config), "pixel array generation");
                runner.Run(() => OutputBitmap(pixels, config), "bitmap creation");
            }
            catch (Exception ex)
            {
               HelpFile("There was an issue in execution");
            }

            Console.ReadLine();
        }

        private static void HelpFile(string errorMessage = "")
        {
            const string Header = "Generates an image with every pixel having a unique color";
            Console.WriteLine(errorMessage == string.Empty ? Header : $"An error has occured: {errorMessage}\n Ensure the Arguments you have provided are valid");
            Console.WriteLine();
            Console.WriteLine($"{AppDomain.CurrentDomain.FriendlyName} X Y");
            Console.WriteLine();
            Console.WriteLine("X\t\tThe Length of the X dimension eg: 256");
            Console.WriteLine("Y\t\tThe Length of the Y dimension eg: 128");
        }

        public static List<Color> GenerateColorList(ColorGeneratorConfig config)
        {

            //Every iteration of our color generation loop will add the iterationfactor to this accumlator which is used to know when to skip
            decimal iterationAccumulator = 0;

            var colors = new List<Color>();
            for (var r = 0; r < config.NumOfSteps; r++)
                for (var g = 0; g < config.NumOfSteps; g++)
                    for (var b = 0; b < config.NumOfSteps; b++)
                    {
                        iterationAccumulator += config.IterationFactor;

                        //If our accumulator has reached 1, then subtract one and skip this iteration
                        if (iterationAccumulator > 1)
                        {
                            iterationAccumulator -= 1;
                            continue;
                        }

                        colors.Add(Color.FromArgb(r*config.ColorStep, g*config.ColorStep,b*config.ColorStep));
                    }
            return colors;
        }

        public static Color?[,] BuildPixelArray(List<Color> colors, ColorGeneratorConfig config)
        {
            //Get a random color to start with.
            var random = new Random(Guid.NewGuid().GetHashCode());
            var nextColor = colors[random.Next(colors.Count)];

            var pixels = new Color?[config.XLength, config.YLength];
            var currPixel = new Point(0, 0);

            var i = 0;

            //Since we've only generated exactly enough colors to fill our image we can remove them from the list as we add them to our image and stop when none are left.
            while (colors.Count > 0)
            {
                i++;

                //Set the current pixel and remove the color from the list.
                pixels[currPixel.X, currPixel.Y] = nextColor;
                colors.RemoveAt(colors.IndexOf(nextColor));

                //Our image generation works in an inward spiral generation GetNext point will retrieve the next pixel given the current top direction.
                var nextPixel = GetNextPoint(currPixel, directions.First());

                //If this next pixel were to be out of bounds (for first circle of spiral) or hit a previously generated pixel (for all other circles)
                //Then we need to cycle the direction and get a new next pixel
                if (nextPixel.X >= config.XLength || nextPixel.Y >= config.YLength || nextPixel.X < 0 || nextPixel.Y < 0 ||
                    pixels[nextPixel.X, nextPixel.Y] != null)
                {
                    var d = directions.First();
                    directions.RemoveAt(0);
                    directions.Add(d);
                    nextPixel = GetNextPoint(currPixel, directions.First());
                }

                //This code sets the pixel to pick a color for and also gets the next color
                //We do this at the end of the loop so that we can also support haveing the first pixel set outside of the loop
                currPixel = nextPixel;

                if (colors.Count == 0) continue;

                var neighbours = GetNeighbours(currPixel, pixels, config);
                nextColor = colors.AsParallel().Aggregate((item1, item2) => GetAvgColorDiff(item1, neighbours) <
                                                                            GetAvgColorDiff(item2, neighbours)
                    ? item1
                    : item2);
            }

            return pixels;
        }

        public static void OutputBitmap(Color?[,] pixels, ColorGeneratorConfig config)
        {
            //Now that we have generated our image in the color array we need to copy it into a bitmap and save it to file.
            var image = new Bitmap(config.XLength, config.YLength);

            for (var x = 0; x < config.XLength; x++)
                for (var y = 0; y < config.YLength; y++)
                    image.SetPixel(x, y, pixels[x, y].Value);

            using (var file = new FileStream($@".\{config.XLength}X{config.YLength}.png", FileMode.Create))
            {
                image.Save(file, ImageFormat.Png);
            }
        }

        static Point GetNextPoint(Point current, Point direction)
        {
            return new Point(current.X + direction.X, current.Y + direction.Y);
        }

        static List<Color> GetNeighbours(Point current, Color?[,] grid, ColorGeneratorConfig config)
        {
            var list = new List<Color>();
            foreach (var direction in directions)
            {
                var xCoord = current.X + direction.X;
                var yCoord = current.Y + direction.Y;
                if (xCoord < 0 || xCoord >= config.XLength|| yCoord < 0 || yCoord >= config.YLength)
                {
                    continue;
                }
                var cell = grid[xCoord, yCoord];
                if (cell.HasValue) list.Add(cell.Value);
            }
            return list;
        }

        static double GetAvgColorDiff(Color source, IList<Color> colors)
        {
            return colors.Average(color => GetColorDiff(source, color));
        }

        static int GetColorDiff(Color color1, Color color2)
        {
            var redDiff = Math.Abs(color1.R - color2.R);
            var greenDiff = Math.Abs(color1.G - color2.G);
            var blueDiff = Math.Abs(color1.B - color2.B);
            return redDiff + greenDiff + blueDiff;
        }
    }

    public class ColorGeneratorConfig
    {
        public int XLength { get; set; }
        public int YLength { get; set; }

        //Get the number of permutations for each color value base on the required number of pixels.
        public int NumOfSteps
            => (int)Math.Ceiling(Math.Pow((ulong)XLength * (ulong)YLength, 1.0 / ColorDimensions));

        //Calculate the increment for each step
        public int ColorStep
            => 255 / (NumOfSteps - 1);

        //Because NumOfSteps will either give the exact number of colors or more (never less) we will sometimes to to skip some
        //this calculation tells how many we need to skip
        public decimal StepsToSkip
            => Convert.ToDecimal(Math.Pow(NumOfSteps, ColorDimensions) - XLength * YLength);

        //This factor will be used to as evenly as possible spread out the colors to be skipped so there are no large gaps in the spectrum
        public decimal IterationFactor => StepsToSkip / Convert.ToDecimal(Math.Pow(NumOfSteps, ColorDimensions));

        private double ColorDimensions => 3.0;
    }

    public class TaskRunner
    {
        private Stopwatch _sw;
        public TaskRunner()
        {
            _sw = new Stopwatch();
        }

        public void Run(Action task, string taskName)
        {
            Console.WriteLine($"Starting {taskName}...");
            _sw.Start();
            task();
            _sw.Stop();
            Console.WriteLine($"Finished {taskName}. Elapsed(ms): {_sw.ElapsedMilliseconds}");
            Console.WriteLine();
            _sw.Reset();
        }

        public T Run<T>(Func<T> task, string taskName)
        {
            Console.WriteLine($"Starting {taskName}...");
            _sw.Start();
            var result = task();
            _sw.Stop();
            Console.WriteLine($"Finished {taskName}. Elapsed(ms): {_sw.ElapsedMilliseconds}");
            Console.WriteLine();
            _sw.Reset();
            return result;
        }
    }
}

如果有人对如何提高选色算法的性能有任何想法,请告诉我,因为它可以显示360 * 240的渲染,大约需要15分钟。我不认为它可以被并行化,但是我确实想知道是否会有更快的方法来获得最低的色差。
Phaeze '16

360 * 240的图像如何构成“所有颜色”?每个组件如何产生cbrt(360 * 240)= 44.208377983684639269357874002958颜色?
Mark Jeronimus '16

这是什么语言?无论如何,对列表排序进行随机化和Random都不是一个好主意,因为根据算法和实现,它可能导致有偏见的结果或说明以下情况的异常"Comparison method violates its general contract!":因为合同规定(x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0。要随机化列表,请使用某些提供的随机播放方法。(colors.Shuffle()?)
Mark Jeronimus '16

@MarkJeronimus我承认我错过了关于256x128图像的规格,我将使用这些尺寸来进行简单的渲染,我专注于每个像素是挑战的独特色彩方面,而其他提交则完成了更大的渲染。
菲兹

@MarkJeronimus我意识到随机排序是不好的,实际上有一条评论说得太多。这只是我开始采用的另一种方法的残余,我优先考虑完成大型渲染,因为它们需要很长时间。
Phaeze '16

16

这是我的另一个建议,我认为它会给出更有趣的结果:

package main

import (
    "image"
    "image/color"
    "image/png"
    "os"

    "math"
    "math/rand"
)

func distance(c1, c2 color.Color) float64 {
    r1, g1, b1, _ := c1.RGBA()
    r2, g2, b2, _ := c2.RGBA()
    rd, gd, bd := int(r1)-int(r2), int(g1)-int(g2), int(b1)-int(b2)
    return math.Sqrt(float64(rd*rd + gd*gd + bd*bd))
}

func main() {
    allcolor := image.NewRGBA(image.Rect(0, 0, 256, 128))
    for y := 0; y < 128; y++ {
        for x := 0; x < 256; x++ {
            allcolor.Set(x, y, color.RGBA{uint8(x%32) * 8, uint8(y%32) * 8, uint8(x/32+(y/32*8)) * 8, 255})
        }
    }

    for y := 0; y < 128; y++ {
        for x := 0; x < 256; x++ {
            rx, ry := rand.Intn(256), rand.Intn(128)

            c1, c2 := allcolor.At(x, y), allcolor.At(rx, ry)
            allcolor.Set(x, y, c2)
            allcolor.Set(rx, ry, c1)
        }
    }

    for i := 0; i < 16384; i++ {
        for y := 0; y < 128; y++ {
            for x := 0; x < 256; x++ {
                xl, xr := (x+255)%256, (x+1)%256
                cl, c, cr := allcolor.At(xl, y), allcolor.At(x, y), allcolor.At(xr, y)
                dl, dr := distance(cl, c), distance(c, cr)
                if dl < dr {
                    allcolor.Set(xl, y, c)
                    allcolor.Set(x, y, cl)
                }

                yu, yd := (y+127)%128, (y+1)%128
                cu, c, cd := allcolor.At(x, yu), allcolor.At(x, y), allcolor.At(x, yd)
                du, dd := distance(cu, c), distance(c, cd)
                if du < dd {
                    allcolor.Set(x, yu, c)
                    allcolor.Set(x, y, cu)
                }
            }
        }
    }

    filep, err := os.Create("EveryColor.png")
    if err != nil {
        panic(err)
    }
    err = png.Encode(filep, allcolor)
    if err != nil {
        panic(err)
    }
    filep.Close()
}

它的开头与我其他答案中的gif相同。然后,将其改组为:

只是噪音

我运行不太启发的邻居比较算法的迭代次数越多,彩虹图案变得越明显。

这是16384:

16384次迭代时发出非常嘈杂的彩虹

和65536:

在此处输入图片说明


6
+1我喜欢从中出现一种模式;您应该制作动画!
杰森C

16

这些图像是“兰顿的彩虹”。它们的绘制相当简单:随着Langton蚂蚁的移动,第一次访问该像素时就会在每个像素上绘制一种颜色。然后简单地将要绘制的颜色增加1,确保使用2 ^ 15种颜色,每个像素一种。

编辑: 我做了一个使用2 ^ 24色渲染4096X4096图像的版本。颜色也被“反射”,因此它们形成漂亮,平滑的渐变。由于它们很大,我只会提供指向它们的链接(> 28 MB)

兰顿的彩虹大号,规则LR

兰顿的彩虹大号,规则LLRR

//编辑结束。

这适用于经典的LR规则集:

兰顿的彩虹LR

这是LLRR:

兰顿的彩虹LLRR

最后,此代码使用LRRRRRLLR规则集:

兰顿的彩虹LRRRRRLLR

用C ++编写,使用CImg进行图形处理。我还应该提到如何选择颜色:首先,我使用无符号的short来包含RGB颜色数据。每次第一次访问一个单元格时,我将这些位右移5的某个倍数,再乘31一次,然后乘以8。然后将无符号的短颜色递增1。这最多会产生0到248的值。但是,我红色和蓝色分量的255中减去了该值,因此R和B为8的倍数,从255开始,一直到7:

c[0]=255-((color&0x1F)*8);
c[2]=255-(((color>>5)&0x1F)*8);
c[1]=(((color>>10)&0x1F)*8);

但是,这不适用于绿色分量,绿色分量是0到248之间的8的倍数。在任何情况下,每个像素都应包含唯一的颜色。

无论如何,源代码如下:

#include "CImg.h"
using namespace cimg_library;
CImgDisplay screen;
CImg<unsigned char> surf;
#define WIDTH 256
#define HEIGHT 128
#define TOTAL WIDTH*HEIGHT
char board[WIDTH][HEIGHT];


class ant
{
  public:
  int x,y;
  char d;
  unsigned short color;
  void init(int X, int Y,char D)
  {
    x=X;y=Y;d=D;
    color=0;
  }

  void turn()
  {
    ///Have to hard code for the rule set here.
    ///Make sure to set RULECOUNT to the number of rules!
    #define RULECOUNT 9
    //LRRRRRLLR
    char get=board[x][y];
    if(get==0||get==6||get==7){d+=1;}
    else{d-=1;}
    if(d<0){d=3;}
    else if(d>3){d=0;}
  }

  void forward()
  {
    if(d==0){x++;}
    else if(d==1){y--;}
    else if(d==2){x--;}
    else {y++;}
    if(x<0){x=WIDTH-1;}
    else if(x>=WIDTH){x=0;}
    if(y<0){y=HEIGHT-1;}
    else if(y>=HEIGHT){y=0;}
  }

  void draw()
  {
    if(board[x][y]==-1)
    {
      board[x][y]=0;
      unsigned char c[3];
      c[0]=255-((color&0x1F)*8);
      c[2]=255-(((color>>5)&0x1F)*8);
      c[1]=(((color>>10)&0x1F)*8);
      surf.draw_point(x,y,c);
      color++;
    }

    board[x][y]++;
    if(board[x][y]==RULECOUNT){board[x][y]=0;}

  }

  void step()
  {
    draw();
    turn();
    forward();
  }
};

void renderboard()
{
  unsigned char white[]={200,190,180};
  surf.draw_rectangle(0,0,WIDTH,HEIGHT,white);
  for(int x=0;x<WIDTH;x++)
  for(int y=0;y<HEIGHT;y++)
  {
    char get=board[x][y];
    if(get==1){get=1;unsigned char c[]={255*get,255*get,255*get};
    surf.draw_point(x,y,c);}
    else if(get==0){get=0;unsigned char c[]={255*get,255*get,255*get};
    surf.draw_point(x,y,c);}
  }
}

int main(int argc, char** argv)
{

  screen.assign(WIDTH*3,HEIGHT*3);
  surf.assign(WIDTH,HEIGHT,1,3);
  ant a;
  a.init(WIDTH/2,HEIGHT/2,2);
  surf.fill(0);
  for(int x=0;x<WIDTH;x++)
  for(int y=0;y<HEIGHT;y++)
  {
    board[x][y]=-1;
  }

  while(a.color<TOTAL)
  {
    a.step();
  }

  screen=surf;
  while(screen.is_closed()==false)
  {
    screen.wait();
  }
  surf.save_bmp("LangtonsRainbow.bmp");
  return 0;
}

1
欢迎加入俱乐部。尝试来自code.google.com/p/ruletablerepository/wiki/…的其他游戏也许很有趣(我参与了该活动)
Mark Jeronimus 2014年

3
图片链接无效,因为Dropbox 杀死了公共文件夹。
user2428118

15

红宝石

我决定自己继续制作PNG,因为我认为这很有趣。此代码从字面上输出原始二进制数据到文件中。

我做了512x512版本。(但是,算法并不有趣。)在我的计算机上,该过程大约需要3秒钟才能完成。

require 'zlib'

class RBPNG
  def initialize
    # PNG header
    @data = [137, 80, 78, 71, 13, 10, 26, 10].pack 'C*'
  end

  def chunk name, data = ''
    @data += [data.length].pack 'N'
    @data += name
    @data += data
    @data += [Zlib::crc32(name + data)].pack 'N'
  end

  def IHDR opts = {}
    opts = {bit_depth: 8, color_type: 6, compression: 0, filter: 0, interlace: 0}.merge opts
    raise 'IHDR - Missing width param' if !opts[:width]
    raise 'IHDR - Missing height param' if !opts[:height]

    self.chunk 'IHDR', %w[width height].map {|x| [opts[x.to_sym]].pack 'N'}.join +
                       %w[bit_depth color_type compression filter interlace].map {|x| [opts[x.to_sym]].pack 'C'}.join
  end

  def IDAT data; self.chunk 'IDAT', Zlib.deflate(data); end
  def IEND; self.chunk 'IEND'; end
  def write filename; IO.binwrite filename, @data; end
end

class Color
  attr_accessor :r, :g, :b, :a

  def initialize r = 0, g = 0, b = 0, a = 255
    if r.is_a? Array
      @r, @g, @b, @a = @r
      @a = 255 if !@a
    else
      @r = r
      @g = g
      @b = b
      @a = a
    end
  end

  def hex; '%02X' * 4 % [@r, @g, @b, @a]; end
  def rgbhex; '%02X' * 3 % [@r, @g, @b]; end
end

img = RBPNG.new
img.IHDR({width: 512, height: 512, color_type: 2})
#img.IDAT ['00000000FFFFFF00FFFFFF000000'].pack 'H*'
r = g = b = 0
data = Array.new(512){ Array.new(512){
  c = Color.new r, g, b
  r += 4
  if r == 256
    r = 0
    g += 4
    if g == 256
      g = 0
      b += 4
    end
  end
  c
} }
img.IDAT [data.map {|x| '00' + x.map(&:rgbhex).join }.join].pack 'H*'
img.IEND
img.write 'all_colors.png'

输出(在中all_colors.png)(单击任何这些图像可放大它们):

输出量

更有趣的渐变效果输出(将第4行到最后一行更改为}.shuffle }):

输出2

通过将其更改为}.shuffle }.shuffle,您会得到疯狂的彩色线条:

输出3


太棒了。有没有办法使它更漂亮?也许随机化像素?Scoring is by vote. Vote for the most beautiful images made by the most elegant code.

1
@LowerClassOverflowian Ok,编辑
Doorknob

好多了!!!!!!!

1
如果将第4行更改为最后一行,将会发生什么}.shuffle }.shuffle }.shuffle
约翰·奥多姆

6
@John Erm,语法错误,可能吗?
Doorknob

14

蟒蛇

等离子体

使用python按亮度对颜色进行排序,生成亮度模式并选择最合适的颜色。像素以随机顺序进行迭代,以便当可用颜色列表变小时自然发生的较差的亮度匹配均匀地分布在整个图片中。

#!/usr/bin/env python

from PIL import Image
from math import pi, sin, cos
import random

WIDTH = 256
HEIGHT = 128

img = Image.new("RGB", (WIDTH, HEIGHT))

colors = [(x >> 10, (x >> 5) & 31, x & 31) for x in range(32768)]
colors = [(x[0] << 3, x[1] << 3, x[2] << 3) for x in colors]
colors.sort(key=lambda x: x[0] * 0.2126 + x[1] * 0.7152 + x[2] * 0.0722)

def get_pixel(lum):
    for i in range(len(colors)):
        c = colors[i]
        if c[0] * 0.2126 + c[1] * 0.7152 + c[2] * 0.0722 > lum:
            break
    return colors.pop(i)

def plasma(x, y):
    x -= WIDTH / 2
    p = sin(pi * x / (32 + 10 * sin(y * pi / 32)))
    p *= cos(pi * y / 64)
    return 128 + 127 * p

xy = []
for x in range(WIDTH):
    for y in range(HEIGHT):
        xy.append((x, y))
random.shuffle(xy)

count = 0
for x, y in xy:
    l = int(plasma(x, y))
    img.putpixel((x, y), get_pixel(plasma(x, y)))
    count += 1
    if not count & 255:
        print "%d pixels rendered" % count

img.save("test.png")

13

爪哇

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096 ; x++) {
                points.add(new Point(x, y));
            }
        }
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

我以4096 x 4096的价格购买了,因为我不知道如何不这样做才能获得所有颜色。

输出:

太大而无法容纳在这里。这是屏幕截图:

在此处输入图片说明

稍作更改,我们就可以得到更美丽的图片:

Collections.shuffle(points, new Random(0));在生成点和进行颜色之间添加:

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096 ; x++) {
                points.add(new Point(x, y));
            }
        }
        Collections.shuffle(points, new Random(0));
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

在此处输入图片说明

特写:

在此处输入图片说明


29
您称一个大的灰色斑点为“美丽”吗?
门把手

22
@Doorknob是的。我称之为非常美丽。我发现所有颜色都可以排列成一个大的灰色斑点令人惊讶。当放大时,我确实发现blob更加有趣。通过更多细节,您可以了解Java的随机性。当我们进一步放大时,就像第二个屏幕截图一样,可以清楚地看到其中有多少种颜色。当我进一步放大时,它看起来像是Piet程序。
贾斯丁

通过删除较低的位,我得到了较小版本的颜色。
Mark Jeronimus 2014年

是的,低位的rgb分别,但我跟他们打交道的一个数字。
贾斯汀

我看到您已经在下一个答案中找到了答案。在主题上,尝试使用自己的Random子类产生更理想的随机数可能会很有趣。
Mark Jeronimus

13

C ++ 11

更新:直到后来我才注意到类似的方法已经尝试过 ---在迭代次数方面更加耐心。)

对于每个像素,我定义了一组相邻像素。我将两个像素之间的差异定义为它们的R / G / B差异的平方和。那么,给定像素的代价就是像素与其相邻像素之间差异的总和。

现在,我首先生成一个随机排列,然后开始选择随机的像素对。如果交换两个像素减少了所有像素的总罚款之和,则交换通过。我重复一百万遍。

输出为PPM格式,我已使用标准实用程序将其转换为PNG。

资源:

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <random>

static std::mt19937 rng;

class Pixel
{
public:
    int r, g, b;

    Pixel() : r(0), g(0), b(0) {}
    Pixel(int r, int g, int b) : r(r), g(g), b(b) {}

    void swap(Pixel& p)
    {
        int r = this->r,  g = this->g,    b = this->b;
        this->r = p.r;    this->g = p.g;  this->b = p.b;
        p.r = r;          p.g = g;        p.b = b;
    }
};

class Image
{
public:
    static const int width = 256;
    static const int height = 128;
    static const int step = 32;
    Pixel pixel[width*height];
    int penalty[width*height];
    std::vector<int>** neighbors;

    Image()
    {
        if (step*step*step != width*height)
        {
            std::cerr << "parameter mismatch" << std::endl;
            exit(EXIT_FAILURE);
        }

        neighbors = new std::vector<int>*[width*height];

        for (int i = 0; i < width*height; i++)
        {
            penalty[i] = -1;
            neighbors[i] = pixelNeighbors(i);
        }

        int i = 0;
        for (int r = 0; r < step; r++)
        for (int g = 0; g < step; g++)
        for (int b = 0; b < step; b++)
        {
            pixel[i].r = r * 255 / (step-1);
            pixel[i].g = g * 255 / (step-1);
            pixel[i].b = b * 255 / (step-1);
            i++;
        }
    }

    ~Image()
    {
        for (int i = 0; i < width*height; i++)
        {
            delete neighbors[i];
        }
        delete [] neighbors;
    }

    std::vector<int>* pixelNeighbors(const int pi)
    {
        // 01: X-shaped structure
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return abs(i) == abs(j); };
        //
        // 02: boring blobs
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return true; };
        //
        // 03: cross-shaped
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return i==0 || j == 0; };
        //
        // 04: stripes
        const int iRad = 1, jRad = 5;
        auto condition = [](int i, int j) { return i==0 || j == 0; };

        std::vector<int>* v = new std::vector<int>;

        int x = pi % width;
        int y = pi / width;

        for (int i = -iRad; i <= iRad; i++)
        for (int j = -jRad; j <= jRad; j++)
        {
            if (!condition(i,j))
                continue;

            int xx = x + i;
            int yy = y + j;

            if (xx < 0 || xx >= width || yy < 0 || yy >= height)
                continue;

            v->push_back(xx + yy*width);
        }

        return v;
    }

    void shuffle()
    {
        for (int i = 0; i < width*height; i++)
        {
            std::uniform_int_distribution<int> dist(i, width*height - 1);
            int j = dist(rng);
            pixel[i].swap(pixel[j]);
        }
    }

    void writePPM(const char* filename)
    {
        std::ofstream fd;
        fd.open(filename);
        if (!fd.is_open())
        {
            std::cerr << "failed to open file " << filename
                      << "for writing" << std::endl;
            exit(EXIT_FAILURE);
        }
        fd << "P3\n" << width << " " << height << "\n255\n";
        for (int i = 0; i < width*height; i++)
        {
            fd << pixel[i].r << " " << pixel[i].g << " " << pixel[i].b << "\n";
        }
        fd.close();
    }

    void updatePixelNeighborhoodPenalty(const int pi)
    {
        for (auto j : *neighbors[pi])
            updatePixelPenalty(j);
    }

    void updatePixelPenalty(const int pi)
    {
        auto pow2 = [](int x) { return x*x; };
        int pen = 0;
        Pixel* p1 = &pixel[pi];
        for (auto j : *neighbors[pi])
        {
            Pixel* p2 = &pixel[j];
            pen += pow2(p1->r - p2->r) + pow2(p1->g - p2->g) + pow2(p1->b - p2->b);
        }
        penalty[pi] = pen / neighbors[pi]->size();
    }

    int getPixelPenalty(const int pi)
    {
        if (penalty[pi] == (-1))
        {
            updatePixelPenalty(pi);
        }
        return penalty[pi];
    }

    int getPixelNeighborhoodPenalty(const int pi)
    {
        int sum = 0;
        for (auto j : *neighbors[pi])
        {
            sum += getPixelPenalty(j);
        }
        return sum;
    }

    void iterate()
    {
        std::uniform_int_distribution<int> dist(0, width*height - 1);       

        int i = dist(rng);
        int j = dist(rng);

        int sumBefore = getPixelNeighborhoodPenalty(i)
                        + getPixelNeighborhoodPenalty(j);

        int oldPenalty[width*height];
        std::copy(std::begin(penalty), std::end(penalty), std::begin(oldPenalty));

        pixel[i].swap(pixel[j]);
        updatePixelNeighborhoodPenalty(i);
        updatePixelNeighborhoodPenalty(j);

        int sumAfter = getPixelNeighborhoodPenalty(i)
                       + getPixelNeighborhoodPenalty(j);

        if (sumAfter > sumBefore)
        {
            // undo the change
            pixel[i].swap(pixel[j]);
            std::copy(std::begin(oldPenalty), std::end(oldPenalty), std::begin(penalty));
        }
    }
};

int main(int argc, char* argv[])
{
    int seed;
    if (argc >= 2)
    {
        seed = atoi(argv[1]);
    }
    else
    {
        std::random_device rd;
        seed = rd();
    }
    std::cout << "seed = " << seed << std::endl;
    rng.seed(seed);

    const int numIters = 1000000;
    const int progressUpdIvl = numIters / 100;
    Image img;
    img.shuffle();
    for (int i = 0; i < numIters; i++)
    {
        img.iterate();
        if (i % progressUpdIvl == 0)
        {
            std::cout << "\r" << 100 * i / numIters << "%";
            std::flush(std::cout);
        }
    }
    std::cout << "\rfinished!" << std::endl;
    img.writePPM("AllColors2.ppm");

    return EXIT_SUCCESS;
}

改变邻居的步伐会得到不同的结果。可以在函数Image :: pixelNeighbors()中进行调整。该代码包括四个选项的示例:(请参见源代码)

示例01 示例02 示例03 示例04

编辑:与上面的第四个示例类似的另一个示例,但是具有更大的内核和更多的迭代:

示例05

一:使用

const int iRad = 7, jRad = 7;
auto condition = [](int i, int j) { return (i % 2==0 && j % 2==0); };

一千万次迭代,我得到了:

示例06


11

这不是最优雅的代码,但有两个方面很有趣:从尺寸上计算颜色的数量(只要尺寸的乘积是2的幂),然后进行三重色彩空间处理:

void Main()
{
    var width = 256;
    var height = 128;
    var colorCount = Math.Log(width*height,2);
    var bitsPerChannel = colorCount / 3;
    var channelValues = Math.Pow(2,bitsPerChannel);
    var channelStep = (int)(256/channelValues);

    var colors = new List<Color>();

    var m1 = new double[,] {{0.6068909,0.1735011,0.2003480},{0.2989164,0.5865990,0.1144845},{0.00,0.0660957,1.1162243}};
    for(var r=0;r<255;r+=channelStep)
    for(var g=0;g<255;g+=channelStep)
    for(var b=0;b<255;b+=channelStep)   
    {
        colors.Add(Color.FromArgb(0,r,g,b));
    }
    var sortedColors = colors.Select((c,i)=>
                            ToLookupTuple(MatrixProduct(m1,new[]{c.R/255d,c.G/255d,c.B/255d}),i))
                            .Select(t=>new
                                            {
                                                x = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 : t.Item1/(t.Item1+t.Item2+t.Item3),
                                                y = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 :t.Item2/(t.Item1+t.Item2+t.Item3),
                                                z = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 :t.Item3/(t.Item1+t.Item2+t.Item3),
                                                Y = t.Item2,
                                                i = t.Item4
                                            })
                            .OrderBy(t=>t.x).Select(t=>t.i).ToList();
    if(sortedColors.Count != (width*height))
    {
        throw new Exception(string.Format("Some colors fell on the floor: {0}/{1}",sortedColors.Count,(width*height)));
    }
    using(var bmp = new Bitmap(width,height,PixelFormat.Format24bppRgb))
    {
        for(var i=0;i<colors.Count;i++)
        {
            var y = i % height;
            var x = i / height;

            bmp.SetPixel(x,y,colors[sortedColors[i]]);
        }
        //bmp.Dump(); //For LINQPad use
        bmp.Save("output.png");
    }
}
static Tuple<double,double,double,int>ToLookupTuple(double[] t, int index)
{
    return new Tuple<double,double,double,int>(t[0],t[1],t[2],index);
}

public static double[] MatrixProduct(double[,] matrixA,
    double[] vectorB)
{
    double[] result=new double[3];
    for (int i=0; i<3; ++i) // each row of A
        for (int k=0; k<3; ++k)
            result[i]+=matrixA[i,k]*vectorB[k];
    return result;
}

只需更改OrderBy子句,便可以实现一些有趣的变化:

X:

在此处输入图片说明

y:

在此处输入图片说明

z:

在此处输入图片说明

Y:

在此处输入图片说明

我希望我能弄清楚是什么导致了前三个中的奇数行


2
这些奇数行可能是某种排序或查找方法(二进制搜索/快速排序?)的
偏差

我实际上真的很喜欢这里的台词。
杰森C

11

爪哇

这是一个更好的主意。这是一些非常简短的Java代码。主要方法只有13行:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);

        for (int r = 0; r < 256; r++) {
            for (int g = 0; g < 256; g++) {
                for (int b = 0; b < 256; b++) {
                    img.setRGB(((r & 15) << 8) | g, ((r >>> 4) << 8 ) | b, (((r << 8) | g) << 8) | b);
                }
            }
        }
        try {
             ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

生成“颜色选择器”块。基本上,在第一个块中r=0,在第二个r=1块中,g以此类推。在每个块中,相对于xb相对于y

我真的很喜欢按位运算符。让我分解一下setRGB声明:

img.setRGB(((r & 15) << 8) | g, ((r >>> 4) << 8 ) | b, (((r << 8) | g) << 8) | b);

((r & 15) << 8) | g         is the x-coordinate to be set.
r & 15                      is the same thing as r % 16, because 16 * 256 = 4096
<< 8                        multiplies by 256; this is the distance between each block.
| g                         add the value of g to this.

((r >>> 4) << 8 ) | b       is the y-coordinate to be set.
r >>> 4                     is the same thing as r / 16.
<< 8 ) | b                  multiply by 256 and add b.

(((r << 8) | g) << 8) | b   is the value of the color to be set.
r << 8                      r is 8 bits, so shift it 8 bits to the left so that
| g                         we can add g to it.
<< 8                        shift those left 8 bits again, so that we can
| b                         add b

由于按位运算符,这仅需要7秒钟即可完成。如果将r & 15替换为r % 16,则需要9秒钟。

我选择了4096 x 4096

输出(屏幕截图,否则太大):

在此处输入图片说明

用徒手绘制的红色圆圈在上面输出带有邪恶笑容的输出:

在此处输入图片说明


2
链接到原始图片,以便我可以验证其有效性(计数颜色)
Mark Jeronimus 2014年

2
大声笑!我忘记了我可以运行Java代码。所述第一图像通过,并且我不能再现第二图像(笑)☺
马克Jeronimus

16
徒手画圈都具有相同的颜色,不合格。:P
尼克T

3
@Quincunx +1,如果您可以绘制一张恐怖的脸并且仍然保持颜色要求!
杰森C

2
@JasonC看看我的回答。功劳归Quincunx所有。
级圣河
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.