的JavaScript(ES6)126 130 104 115 156 162 194
在@CarpetPython的答案中所有注释和测试用例之后,回到我的第一个算法。las,智能解决方案不起作用。实现缩短了一点,它仍然尝试所有可能的解决方案,计算平方距离并保持最小值。
编辑对于权重w的每个输出元素,“所有”的可能值仅为2:trunc(w * s)和trunc(w * s)+1,因此仅尝试了(2 ** elemensts)种可能的解决方案。
Q=(s,w)=>
(n=>{
for(i=0;
r=q=s,(y=i++)<1<<w.length;
q|r>n||(n=r,o=t))
t=w.map(w=>(f=w*s,q-=d=0|f+(y&1),y/=2,f-=d,r+=f*f,d));
})()||o
在Firefox / FireBug控制台中测试
;[[ 1, [0.4, 0.3, 0.3] ]
, [ 3, [0, 1, 0] ]
, [ 4, [0.3, 0.4, 0.3] ]
, [ 5, [0.3, 0.4, 0.3] ]
, [ 21, [0.3, 0.2, 0.5] ]
, [ 5, [0.1, 0.2, 0.3, 0.4] ]
, [ 4, [0.11, 0.3, 0.59] ]
, [ 10, [0.47, 0.47, 0.06] ]
, [ 10, [0.43, 0.43, 0.14] ]
, [ 11, [0.43, 0.43, 0.14] ]]
.forEach(v=>console.log(v[0],v[1],Q(v[0],v[1])))
输出量
1 [0.4, 0.3, 0.3] [1, 0, 0]
3 [0, 1, 0] [0, 3, 0]
4 [0.3, 0.4, 0.3] [1, 2, 1]
5 [0.3, 0.4, 0.3] [1, 2, 2]
21 [0.3, 0.2, 0.5] [6, 4, 11]
5 [0.1, 0.2, 0.3, 0.4] [0, 1, 2, 2]
4 [0.11, 0.3, 0.59] [1, 1, 2]
10 [0.47, 0.47, 0.06] [5, 5, 0]
10 [0.43, 0.43, 0.14] [4, 4, 2]
11 [0.43, 0.43, 0.14] [5, 5, 1]
那是一个更聪明的解决方案。单次传递weigth数组。
对于每遍,我找到w中的当前最大值。我用加权整数值(四舍五入)就地更改此值,因此,如果s == 21且w = 0.4,我们得到0.5 * 21-> 10.5->11。我存储了该值,因此不能在下一个循环中被发现为最大值。然后,我相应地减少总和(s = s-11),也减少变量f中的权重的总和。
当没有最大大于0的最大值(已管理所有值= 0)时,循环结束。
最后,我再次将值更改为正值。
警告此代码会修改权重数组,因此必须使用原始数组的副本来调用它
F=(s,w)=>
(f=>{
for(;j=w.indexOf(z=Math.max(...w)),z>0;f-=z)
s+=w[j]=-Math.ceil(z*s/f);
})(1)||w.map(x=>0-x)
我的第一次尝试
并不是一个聪明的解决方案。对于每种可能的结果,它都会评估差异,并保持最小值。
F=(s,w,t=w.map(_=>0),n=NaN)=>
(p=>{
for(;p<w.length;)
++t[p]>s?t[p++]=0
:t.map(b=>r+=b,r=p=0)&&r-s||
t.map((b,i)=>r+=(z=s*w[i]-b)*z)&&r>n||(n=r,o=[...t])
})(0)||o
Ungolfed并解释
F=(s, w) =>
{
var t=w.map(_ => 0), // 0 filled array, same size as w
n=NaN, // initial minumum NaN, as "NaN > value" is false for any value
p, r
// For loop enumerating from [1,0,0,...0] to [s,s,s...s]
for(p=0; p<w.length;)
{
++t[p]; // increment current cell
if (t[p] > s)
{
// overflow, restart at 0 and point to next cell
t[p] = 0;
++p;
}
else
{
// increment ok, current cell is the firts one
p = 0;
r = 0;
t.map(b => r += b) // evaluate the cells sum (must be s)
if (r==s)
{
// if sum of cells is s
// evaluate the total squared distance (always offset by s, that does not matter)
t.map((b,i) => r += (z=s*w[i]-b)*z)
if (!(r > n))
{
// if less than current mininum, keep this result
n=r
o=[...t] // copy of t goes in o
}
}
}
}
return o
}