Rust,929 923个字符
use std::io;use std::str::FromStr;static C:&'static [i32]=&[-2,-1,2,5,10,15];fn main(){let mut z=String::new();io::stdin().read_line(&mut z).unwrap();let n=(&z.trim()[..]).split(' ').map(|e|i32::from_str(e).unwrap()).collect::<Vec<i32>>();let l=*n.iter().min().unwrap();let x=n.iter().max().unwrap()-if l>1{1}else{l};let s=g(x as usize);println!("{}",p(1,n,&s));}fn g(x:usize)->Vec<i32>{let mut s=vec![std::i32::MAX-9;x];for c in C{if *c>0&&(*c as usize)<=x{s[(*c-1)as usize]=1;}}let mut i=1us;while i<x{let mut k=i+1;for c in C{if(i as i32)+*c<0{continue;}let j=((i as i32)+*c)as usize;if j<x&&s[j]>s[i]+1{s[j]=s[i]+1;if k>j{k=j;}}}i=k;}s}fn p(r:i32,n:Vec<i32>,s:&Vec<i32>)->i32{if n.len()==1{h(r,n[0],&s)}else{(0..n.len()).map(|i|{let mut m=n.clone();let q=m.remove(i);p(q,m,&s)+h(r,q,&s)}).min().unwrap()}}fn h(a:i32,b:i32,s:&Vec<i32>)->i32{if a==b{0}else if a>b{((a-b)as f32/2f32).ceil()as i32}else{s[(b-a-1)as usize]}}
真有趣!
实施评论
因此,我显然对尺寸不太满意。但是无论如何,Rust在打高尔夫球方面绝对是可怕的。但是,该性能很棒。
该代码在几乎瞬时的时间内正确地解决了每个测试用例,因此性能显然不是问题。为了好玩,这里有一个更加困难的测试用例:
1234567 123456 12345 1234 123 777777 77777 7777 777
答案是82317
,即使使用递归蛮力汉密尔顿路径算法,我的程序也能够在1.66秒(!)内在(中等性能)笔记本电脑上解决该问题。
观察结果
首先,我们应该构建一个修改后的加权图,节点是每个“幸运”数字,权重是从一个信誉级别到另一个信誉级别需要进行多少更改。每对节点必须由两个边连接,因为信誉值的上升与下降并不相同(例如,可以得到+10,但不能得到-10)。
现在,我们需要弄清楚如何找到从一个代表值到另一个代表值的最小变化量。
一旦计算出从每个数字到每个其他数字的最小变化,我们实际上就剩下了TSP的细微变化(旅行商问题)。幸运的是,节点数量很少(在最困难的测试用例中最多为5个),蛮力足以完成此步骤。
取消程式码(大量评论)
use std::io;
use std::str::FromStr;
// all possible rep changes
static CHANGES: &'static [i32] = &[-2, -1, 2, 5, 10, 15];
fn main() {
// read line of input, convert to i32 vec
let mut input = String::new();
io::stdin().read_line(&mut input).unwrap();
let nums = (&input.trim()[..]).split(' ').map(|x| i32::from_str(x).unwrap())
.collect::<Vec<i32>>();
// we only need to generate as many additive solutions as max(nums) - min(nums)
// but if one of our targets isn't 1, this will return a too-low value.
// fortunately, this is easy to fix as a little hack
let min = *nums.iter().min().unwrap();
let count = nums.iter().max().unwrap() - if min > 1 { 1 } else { min };
let solutions = generate_solutions(count as usize);
// bruteforce!
println!("{}", shortest_path(1, nums, &solutions));
}
fn generate_solutions(count: usize) -> Vec<i32> {
let mut solutions = vec![std::i32::MAX - 9; count];
// base cases
for c in CHANGES {
if *c > 0 && (*c as usize) <= count {
solutions[(*c-1) as usize] = 1;
}
}
// dynamic programming! \o/
// ok so here's how the algorithm works.
// we go through the array from start to finish, and update the array
// elements at i-2, i-1, i+2, i+5, ... if solutions[i]+1 is less than
// (the corresponding index to update)'s current value
// however, note that we might also have to update a value at a lower index
// than i (-2 and -1)
// in that case, we will have to go back that many spaces so we can be sure
// to update *everything*.
// so for simplicity, we just set the new index to be the lowest changed
// value (and increment it if there were none changed).
let mut i = 1us; // (the minimum positive value in CHANGES) - 1 (ugly hardcoding)
while i < count {
let mut i2 = i+1;
// update all rep-values reachable in 1 "change" from this rep-value,
// by setting them to (this value + 1), IF AND ONLY IF the current
// value is less optimal than the new value
for c in CHANGES {
if (i as i32) + *c < 0 { continue; } // negative index = bad
let idx = ((i as i32) + *c) as usize; // the index to update
if idx < count && solutions[idx] > solutions[i]+1 {
// it's a better solution! :D
solutions[idx] = solutions[i]+1;
// if the index from which we'll start updating next is too low,
// we need to make sure the thing we just updated is going to,
// in turn, update other things from itself (tl;dr: DP)
if i2 > idx { i2 = idx; }
}
}
i = i2; // update index (note that i2 is i+1 by default)
}
solutions
}
fn shortest_path(rep: i32, nums: Vec<i32>, solutions: &Vec<i32>) -> i32 {
// mercifully, all the test cases are small enough so as to not require
// a full-blown optimized traveling salesman implementation
// recursive brute force ftw! \o/
if nums.len() == 1 { count_changes(rep, nums[0], &solutions) } // base case
else {
// try going from 'rep' to each item in 'nums'
(0..nums.len()).map(|i| {
// grab the new rep value out of the vec...
let mut nums2 = nums.clone();
let new_rep = nums2.remove(i);
// and map it to the shortest path if we use that value as our next target
shortest_path(new_rep, nums2, &solutions) + count_changes(rep, new_rep, &solutions)
}).min().unwrap() // return the minimum-length path
}
}
fn count_changes(start: i32, finish: i32, solutions: &Vec<i32>) -> i32 {
// count the number of changes required to get from 'start' rep to 'finish' rep
// obvious:
if start == finish { 0 }
// fairly intuitive (2f32 is just 2.0):
else if start > finish { ((start - finish) as f32 / 2f32).ceil() as i32 }
// use the pregenerated lookup table for these:
else /* if finish > start */ { solutions[(finish - start - 1) as usize] }
}
<!-- language-all: lang-rust -->
。;)