查找原始半完美数字


17

半完美数字

半完美/伪完美数是一个等于其除数的一部分或全部(不包括自身)的总和的整数。等于所有除数之和的数字是完美的。

Divisors of 6 : 1,2,3
      6 = 1+2+3 -> semiperfect (perfect)
Divisors of 28 : 1,2,4,7,14
      28 = 14+7+4+2+1 -> semiperfect (perfect)
Divisors of 40 : 1,2,4,5,8,10,20
      40 = 1+4+5+10+20 or 2+8+10+20 -> semiperfect

原始

原始的半完美数是没有半完美除数的半完美数(自身除外:))

Divisors of 6 : 1,2,3
      6  = 1+2+3 -> primitive
Divisors of 12 : 1,2,3,4,6
      12 = 2+4+6 -> semiperfect

作为参考,请使用OEIS系列A006036的原始半完全数,和A005835的semiperfects。

目标

用任何语言编写程序或函数。它将以数字n作为函数参数或从STDIN /您的语言最接近的替代品中输入,并将输出从1到n(包括1和n)的所有原始半完美数字。

输出的格式必须为6[separator]20[separator]28[separator]88...[分隔符]为换行符,空格或逗号。不得有开始的[分隔符]或结尾的分隔符。

编辑:您可以留下尾随换行符

例子

输入:

5

输出:

输入:

20

输出:

6
20

输入:

100

输出:

6 20 28 88

计分

这是代码高尔夫球,因此以字节为单位的最短代码获胜。

请不要试图通过漏洞来欺骗我们:)。

我很高兴您认为自己打完高尔夫球后就可以对高尔夫球代码进行解释了!

由于此挑战已经有了一些不错的答案,并且正在逐渐变得安静,因此我将结束这一挑战。本代码高尔夫的获胜者将在格林尼治标准时间星期一29,00:00决定。你们所有人都做得很好,祝愿那些击败他们的人好运:)

Answers:


8

Pyth,28 27字节

VQI}KhNsMyJf!%KTSNI!@JYeaYK

1字节感谢@Jakube

示范。

VQI}KhNsMyJf!%KTSNI!@JYeaYK
                                Implicit:
                                Y = []
                                Q = eval(input())
VQ                              for N in range(Q):
    KhN                         K = N+1
           f    SN              filter T over range(1, N)
            !%KT                the logical not of K%T.
                                This is the list of divisors of K.
          J                     Store the list in J.
         y                      Create all of its subsets.
       sM                       Map each subset to its sum.
  I}K                           If K is in that list: (If K is semiperfect)
                  I!@JY         If the intersection of J (the divisors)
                                and Y (the list of primitive semiperfect numbers)
                                is empty:
                        aYK     Append K to Y
                       e        And print its last element, K.

@AlexA。谢谢!必须附加KYbuild Y,这是其他地方所需要的。但是,我可以单独打印,例如使用aYKK代替eaYK。但是,无论哪种方式都是4字节。
isaacg 2015年

3

朱莉娅161个 149字节

n->(S(m)=!isempty(filter(i->i==unique(i)&&length(i)>1&&all(j->m%j<1,i),partitions(m)));for i=2:n S(i)&&!any(S,filter(k->i%k<1,1:i-1))&&println(i)end)

这将创建一个未命名的函数,该函数接受整数作为输入,并将数字打印到STDOUT并以换行符分隔。要给它起个名字,例如f=n->...

取消+说明:

# Define a function that determines whether the input is semiperfect
# (In the submission, this is defined as a named inline function within the
# primary function. I've separated it here for clarity.)

function S(m)
    # Get all integer arrays which sum to m
    p = partitions(m)

    # Filter the partitions to subsets of the divisors of m
    d = filter(i -> i == unique(i) && length(i) > 1 && all(j -> m % j == 0, i), p)

    # If d is nonempty, the input is semiperfect
    !isempty(d)
end

# The main function

function f(n)
    # Loop through all integers from 2 to n
    for i = 2:n
        # Determine whether i is semiperfect
        if S(i)
            # If no divisors of i are semiperfect, print i
            !any(S, filter(k -> i % k == 0, 1:i-1) && println(i)
        end
    end
end

例子:

julia> f(5)

julia> f(40)
6
20
28

3

JavaScript(ES6)172

运行下面的代码片段进行测试

f=
v=>eval("for(n=h=[];n++<v;!t*i&&n>1?h[n]=1:0){for(r=[l=i=t=1];++i<n;)n%i||(h[i]?t=0:l=r.push(i));for(i=0;t&&++i<1<<l;)r.map(v=>i&(m+=m)?t-=v:0,t=n,m=.5)}''+Object.keys(h)")


// Less golfed

ff=v=>
{
   h=[]; // hashtable with numbers found so far

   for (n=1; n <= v; n++)
   {
      r=[1],l=1; // r is the list of divisors, l is the length of this list
      t=1; // used as a flag, will become 0 if a divisor is in h
      for(i=2; i<n; i++)
      {
         if (n%i == 0)
            if (h[i])
               t = 0; // found a divisor in h, n is not primitive
            else
               l = r.push(i); // add divisor to r and adjust l
      }
      if (t != 0) // this 'if' is merged with the for below in golfed code
      { 
         // try all the sums, use a bit mask to find combinations
         for(i = 1; t != 0 && i < 1<<l; i++)
         {
            t = n; // start with n and subtract, if ok result will be 0 
            m = 0.5; // start with mask 1/2 (nice that in Javascript we can mix int and floats)
            r.forEach( v=> i & (m+=m) ? t -= v : 0);
         }
         if (t == 0 && n > 1) h[n] = 1; // add n to the hashmap (the value can be anything)
      }
   }
   // the hashmap keys list is the result
   return '' + Object.keys(h) // convert to string, adding commas
}

(test=()=> O.textContent=f(+I.value))();
<input id=I type=number oninput="test()" value=999><pre id=O></pre>


@JörgHülsermann完成了,感谢您的注意
edc65 '17

2

CJam,54个字节

这个解决方案有点尴尬,但是由于答案很少,而在CJam中却没有答案,我想我还是应该发布它:

Lli),2>{_N,1>{N\%!},_@&!\_,2,m*\f{.*:+}N#)e&{N+}&}fNS*

在发布的Pyth解决方案中,增量的很大一部分来自以下事实:据我所知,CJam没有运算符来枚举集合的所有子集。因此,需要花一些时间才能与可用的运算符配合完成。当然,如果实际上我错过了一个简单的运算符,我看起来会很傻。:)

说明:

L     Start stack with empty list that will become list of solutions.
li    Get input N and convert to int.
),2>  Build list of candidate solutions [2 .. N].
{     Start for loop over all candidate solutions.
_     Copy list of previous solutions, needed later to check for candidate being primitive.
N,1>  Build list of possible divisors [1 .. N-1].
{N\%!},  Filter list to only contain actual divisors of N.
_     Check if one of divisors is a previous solution. Start by copying divisor list.
@     Pull copy of list with previous solutions to top of stack
&!    Intersect the two lists, and check the result for empty. Will be used later.
\     Swap top two elements, getting divisor list back to top.
_,    Get length of divisor list.
2,    Put [0 1] on top of stack.
m*    Cartesian power. Creates all 0/1 sequences with same length as divisor list.
\     Swap with divisor list.
f{.*:+}  Calculate element by element product of all 0/1 sequences with divisors,
         and sum up the values (i.e. dot products of 0/1 sequences with divisors).
         The result is an array with all possible divisor sums.
N#)  Find N in list of divisor sums, and covert to truth value.
e&   Logical and with earlier result from primitive test.
{N+}&  Add N to list of solutions if result is true.
}fN  Phew! We finally made it to the end of the for loop, and have a list of solutions.
S*   Join the list of solutions with spaces in between.

在线尝试


2

PHP,263字节

function m($a,$n){for($t=1,$b=2**count($a);--$b*$t;$t*=$r!=$n,$r=0)foreach($a as$k=>$v)$r+=($b>>$k&1)*$v;return$t;}for($o=[];$i++<$argn;m($d,$i)?:$o=array_merge($o,range($r[]=$i,3*$argn,$i)))for($d=[],$n=$i;--$n*!in_array($i,$o);)$i%$n?:$d[]=$n;echo join(",",$r);

在线尝试!

展开式

function m($a,$n){ 
  for($t=1,$b=2**count($a);--$b*$t;$t*=$r!=$n,$r=0) #loop through bitmasks
    foreach($a as$k=>$v)$r+=($b>>$k&1)*$v; # loop through divisor array
  return$t;} # returns false for semiperfect numbers 
for($o=[];$i++<$argn;
m($d,$i)?
  :$o=array_merge($o,range($r[]=$i,3*$argn,$i))) # Make the result array and the array of multiples of the result array 
  for($d=[],$n=$i;--$n*!in_array($i,$o);) # check if integer is not in multiples array
    $i%$n?:$d[]=$n; # make divisor array
echo join(",",$r); #Output

1

果冻,22字节

ÆDṖŒPS€i
ÆDÇ€TL’
RÇÐḟY

在线尝试!

说明

ÆDṖŒPS€i - helper function to check if input is a semiperfect number
ÆD       - list of divisors of input
  Ṗ      - except for the last one (the input)
   ŒP    - power set = every possible subset of divisors
     S€  - sum of each subset
       i - return truthy iff input is one of these

ÆDÇ€TL’ - helper function to check if input is a primitive semiperfect number
ÆD       - list of divisors of input
  ǀ     - replace each with if they are a semiperfect number, based on 
           the above helper function. If input is a primitive semiperfect 
           number, we get something like [0,0,0,0,0,94]. 
    T    - get all truthy values.
     L’  - return falsy iff there is only one truthy value

RÇÐḟY    - main link
R        - Range[input]
 ÇÐḟ     - Filter out those elements which are not primitive semiperfect
           numbers, based on the helper function
    Y    - join by newlines.
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.