⊥1↓⍧|/⌽(+/g[⍸⌽+/⊤⎕]),↑,\⌽g←(2+/,)⍣38⍨⍳2
在线尝试!
更改为带有一个长度为2的参数的完整程序,还更改了Fibonacci生成器。感谢@ngn提供了很多建议。
用途⎕IO←0
,使⍳2
计算结果为0 1
。
斐波那契发电机(新)
请注意,最后两个数字是不准确的,但不会改变程序的输出。
(2+/,)⍣38⍨⍳2
→ 0 1 ((2+/,)⍣38) 0 1
Step 1
0 1 (2+/,) 0 1
→ 2+/ 0 1 0 1
→ (0+1) (1+0) (0+1) ⍝ 2+/ evaluates sums for moving window of length 2
→ 1 1 1
Step 2
0 1 (2+/,) 1 1 1
→ 2+/ 0 1 1 1 1
→ 1 2 2 2
Step 3
0 1 (2+/,) 1 2 2 2
→ 2+/ 0 1 1 2 2 2
→ 1 2 3 4 4
泽肯多夫至平原(部分)
⍸⌽+/⊤⎕
⎕ ⍝ Take input from stdin, must be an array of 2 numbers
⊤ ⍝ Convert each number to base 2; each number is mapped to a column
+/ ⍝ Sum in row direction; add up the counts at each digit position
⌽ ⍝ Reverse
⍸ ⍝ Convert each number n at index i to n copies of i
g←1↓(1,+\⍤,)⍣20⍨1
{⊥1↓⍧|/⌽⍵,↑,\⌽g}+⍥{+/g[⍸⌽⊤⍵]}
在线尝试!
更改了先前答案的第1部分,以重新使用斐波那契数。另外,删除重复的1可以在其他位置保存一些字节。
第1部分(新)
{+/g[⍸⌽⊤⍵]}
⊤⍵ ⍝ Argument to binary digits
⍸⌽ ⍝ Reverse and convert to indices of ones
g[ ] ⍝ Index into the Fibonacci array of 1,2,3,5,...
+/ ⍝ Sum
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1}+⍥({+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤)
在线尝试!
怎么运行的
Zeckendorf中没有花哨的算法可以做加法运算,因为APL在数组中单个元素上的运算尚不为人所知。相反,我继续将Zeckendorf的两个输入转换为纯整数,将它们相加,然后转换回去。
第1部分:Zeckendorf至普通整数
{+∘÷⍣(⌽⍳≢⊤⍵)⍨1}⊥⊤ ⍝ Zeckendorf to plain integer
⊤ ⍝ Convert the input to array of binary digits (X)
{ ( ≢⊤⍵) } ⍝ Take the length L of the binary digits and
⌽⍳ ⍝ generate 1,2..L backwards, so L..2,1
{+∘÷⍣( )⍨1} ⍝ Apply "Inverse and add 1" L..2,1 times to 1
⍝ The result looks like ..8÷5 5÷3 3÷2 2 (Y)
⊥ ⍝ Mixed base conversion of X into base Y
Base | Digit value
-------------------------------
13÷8 | (8÷5)×(5÷3)×(3÷2)×2 = 8
8÷5 | (5÷3)×(3÷2)×2 = 5
5÷3 | (3÷2)×2 = 3
3÷2 | 2 = 2
2÷1 | 1 = 1
第2部分:添加两个普通整数
+⍥z2i ⍝ Given left and right arguments,
⍝ apply z2i to each of them and add the two
第3部分:将总和转换回Zeckendorf
“您可以假设输入和输出的Zeckendorf表示都适合31位”,这非常方便。
{⊥1↓¯1↓⍧|/⌽⍵,↑,\⌽(1,+\⍤,)⍣20⍨1} ⍝ Convert plain integer N to Zeckendorf
(1,+\⍤,)⍣20⍨1 ⍝ First 41 Fibonacci numbers starting with two 1's
⌽ ⍝ Reverse
↑,\ ⍝ Matrix of prefixes, filling empty spaces with 0's
⌽⍵, ⍝ Prepend N to each row and reverse horizontally
|/ ⍝ Reduce by | (residue) on each row (see below)
⍧ ⍝ Nub sieve; 1 at first appearance of each number, 0 otherwise
1↓¯1↓ ⍝ Remove first and last item
⊥ ⍝ Convert from binary digits to integer
斐波那契发电机
(1,+\⍤,)⍣20⍨1
→ 1 ((1,+\⍤,)⍣20) 1 ⍝ Expand ⍨
→ Apply 1 (1,+\⍤,) x 20 times to 1
First iteration
1(1,+\⍤,)1
→ 1,+\1,1 ⍝ Expand the train
→ 1,1 2 ⍝ +\ is cumulative sum
→ 1 1 2 ⍝ First three Fibonacci numbers
Second iteration
1(1,+\⍤,)1 1 2
→ 1,+\1,1 1 2 ⍝ Expand the train
→ 1 1 2 3 5 ⍝ First five Fibonacci numbers
⍣20 ⍝ ... Repeat 20 times
这是根据斐波那契数字的属性得出的:如果斐波那契定义为
F0=F1个= 1 ; ∀ Ñ ≥ 0 ,Fn + 2=Fn + 1+Fñ
然后
∀ Ñ ≥ 0 ,∑我= 0ñF一世=Fn + 2− 1
所以累积总和 1个,F0,⋯,Fñ (以1开头的斐波那契数组)变为 F1个,⋯ ,Fn + 2。然后,我再次在前面加上1,以获取从索引0开始的常规斐波那契数组。
斐波那契到泽肯多夫数字
Input: 7, Fibonacci: 1 1 2 3 5 8 13
Matrix
0 0 0 0 0 0 13 7
0 0 0 0 0 8 13 7
0 0 0 0 5 8 13 7
0 0 0 3 5 8 13 7
0 0 2 3 5 8 13 7
0 1 2 3 5 8 13 7
1 1 2 3 5 8 13 7
Reduction by residue (|/)
- Right side always binds first.
- x|y is equivalent to y%x in other languages.
- 0|y is defined as y, so leading zeros are ignored.
- So we're effectively doing cumulative scan from the right.
0 0 0 0 0 0 13 7 → 13|7 = 7
0 0 0 0 0 8 13 7 → 8|7 = 7
0 0 0 0 5 8 13 7 → 5|7 = 2
0 0 0 3 5 8 13 7 → 3|2 = 2
0 0 2 3 5 8 13 7 → 2|2 = 0
0 1 2 3 5 8 13 7 → 1|0 = 0
1 1 2 3 5 8 13 7 → 1|0 = 0
Result: 7 7 2 2 0 0 0
Nub sieve (⍧): 1 0 1 0 1 0 0
1's in the middle are produced when divisor ≤ dividend
(so it contributes to a Zeckendorf digit).
But the first 1 and last 0 are meaningless.
Drop first and last (1↓¯1↓): 0 1 0 1 0
Finally, we apply base 2 to integer (⊥) to match the output format.