查找无和分区


17

执行摘要

给定input k,找到整数分区,1将其划分n为无k和子集,以n在10分钟内找到最大的子集。

背景:舒尔数

一组A免费的总和,如果其自我总结A + A = { x + y | x, y in A}有没有相同的元素吧。

对于每个正整数,k都有一个最大的整数S(k),以便{1, 2, ..., S(k)}可以将集合划分为无k和子集。该编号称为第k Schur编号(OEIS A045652)。

例如,S(2) = 4。我们可以将分区{1, 2, 3, 4}{1, 4}, {2, 3},这是唯一的分区,分为两个无和子集,但是现在不能在这5两个部分中添加。

挑战

编写一个执行以下操作的确定性程序

  • 以正整数k作为输入
  • 将当前的Unix时间戳写入stdout
  • 按照当前的Unix时间戳,将每个序列的划分为1to 的一系列划分n为无k和子集,以进行递增n

获胜者将是在n输入后10分钟内在我的计算机上打印最大分区的程序5。纽带将以最快的时间断开,以找到最大的n,平均3次运行的分区:这就是为什么输出应包含时间戳的原因。

重要细节:

  • 我有Ubuntu Precise,因此如果不支持您的语言,我将无法评分。
  • 我有一个Intel Core2 Quad CPU,所以如果您要使用多线程,那么使用4个以上的线程是没有意义的。
  • 如果您希望我使用任何特定的编译器标志或实现,请在您的答案中清楚记录。
  • 您不应对代码进行特殊处理以处理输入5
  • 您无需输出发现的所有改进。例如,对于输入,2您只能输出的分区n = 4。但是,如果您在前10分钟内未输出任何内容,那么我会将其计为n = 0

Answers:


8

Python 3中,排序的最大数,n = 92 121

感谢MartinBüttner提出的建议,该建议意外地提高了所n达到的最大值。

最后输出:

[2, 3, 11, 12, 29, 30, 38, 39, 83, 84, 92, 93, 110, 111, 119, 120]
[1, 4, 10, 13, 28, 31, 37, 40, 82, 85, 91, 94, 109, 112, 118, 121]
[5, 6, 7, 8, 9, 32, 33, 34, 35, 36, 86, 87, 88, 89, 90, 113, 114, 115, 116, 117]
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]

该算法与我以前的答案相同,引用如下:

到目前为止,有k个垃圾箱中既有数字,又有数字了。在迭代的每个深度(基本上是深度优先搜索)中,对bin进行排序,然后将下一个数字(nextN)(顺序)放入可以使用的bin中,然后再深一层。如果没有,则返回,备份一步。

...除了一个例外:bin的顺序没有被打乱。取而代之的是,排序方式应使数量最多的垃圾箱在最前面。n = 121在8秒内达到了!

码:

from copy import deepcopy
from random import shuffle, seed
from time import clock, time
global maxN
maxN = 0
clock()

def search(k,nextN=1,sets=None):
    global maxN
    if clock() > 600: return

    if nextN == 1: #first iteration
        sets = []
        for i in range(k):
            sets.append([[],[]])

    sets.sort(key=lambda x:max(x[0]or[0]), reverse=True)
    for i in range(k):
        if clock() > 600: return
        if nextN not in sets[i][1]:
            sets2 = deepcopy(sets)
            sets2[i][0].append(nextN)
            sets2[i][1].extend([nextN+j for j in sets2[i][0]])
            nextN2 = nextN + 1

            if nextN > maxN:
                maxN = nextN
                print("New maximum!",maxN)
                for s in sets2: print(s[0])
                print(time())
                print()

            search(k, nextN2, sets2)

search(5)

注:通过禁止号码给人的范围内允许号码最大数量排序n=59,并允许号码的最大数量少于排序nextN给出n=64。按不允许的数字列表的长度排序(可能重复),可以非常迅速地得出一种优雅的n=30样式。
El'endia Starman

输出时间格式不正确(自纪元以来应该是几秒钟,但我看到了Tue Nov 10 00:44:25 2015),但是我看到n=92的时间不到2秒。
彼得·泰勒

嗯,我认为时间格式并不像精确显示所需的时间那么重要。我会弄清楚并进行更改。编辑:D'哦。我挑ctimetime,因为输出更漂亮的时候time正是我应该已经挑选了。
El'endia Starman

您知道,您也可以按垃圾箱中的最大数字排序,因为不允许的最大数字始终是该数字的两倍。
马丁·恩德

@MartinBüttner:......我...呃...我不知道如何或为什么,但是知道了n=121。oO
El'endia Starman 2015年

7

Python 3,121,<0.001秒

马丁·巴特纳(Martin Buttner)改进了启发式算法,这意味着我们甚至不需要随机性。

输出:

1447152500.9339304
[1, 4, 10, 13, 28, 31, 37, 40, 82, 85, 91, 94, 109, 112, 118, 121]
[2, 3, 11, 12, 29, 30, 38, 39, 83, 84, 92, 93, 110, 111, 119, 120]
[5, 6, 7, 8, 9, 32, 33, 34, 35, 36, 86, 87, 88, 89, 90, 113, 114, 115, 116, 117]
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]
1447152500.934646 121

码:

from copy import deepcopy
from random import seed, randrange
from time import clock, time
from cProfile import run

n = 5

seed(0)

def heuristic(bucket):
    return len(bucket[0]) and bucket[0][-1]

def search():
    best = 0
    next_add = 1
    old_add = 0
    lists = [[[],set()] for _ in range(n)]
    print(time())
    while clock() < 600 and next_add != old_add:
        old_add = next_add
        lists.sort(key=heuristic, reverse=True)
        for i in range(n):
            if next_add not in lists[i][1]:
                lists[i][0].append(next_add)
                lists[i][1].update([next_add + old for old in lists[i][0]])
                if next_add > best:
                    best = next_add
                next_add += 1
                break

    for l in lists:
        print(l[0])
    print(time(), next_add-1, end='\n\n')

search()

Python 3、112

按前2个元素的总和+偏斜排序

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]
[7, 8, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 33, 80, 81, 82, 83, 84, 85, 86, 100, 101, 102, 103, 104, 105, 106]
[3, 4, 14, 19, 21, 26, 36, 37, 87, 92, 94, 99, 109, 110]
[2, 5, 16, 17, 20, 23, 24, 35, 38, 89, 90, 96, 97, 108, 111]
[1, 6, 15, 18, 22, 25, 34, 39, 88, 91, 93, 95, 98, 107, 112]
1447137688.032085 138.917074 112

我复制了El'endia Starman的数据结构,该数据结构由成对的列表组成,其中对的第一个元素是该存储桶中的元素,第二个是该存储桶的总和。

我从相同的“跟踪可用金额”方法开始。我的排序启发式只是给定列表中最小的两个元素的总和。我还添加了一个小的随机偏斜来尝试不同的可能性。

每次迭代都将每个新数字简单地放置在第一个可用仓中,类似于随机贪婪。一旦失败,它将重新启动。

from copy import deepcopy
from random import seed, randrange
from time import clock, time

n = 5

seed(0)

def skew():
    return randrange(9)

best = 0
next_add = old_add = 1
while clock() < 600:
    if next_add == old_add:
        lists = [[[],[]] for _ in range(n)]
        next_add = old_add = 1
    old_add = next_add
    lists.sort(key=lambda x:sum(x[0][:2]) + skew(), reverse=True)
    for i in range(n):
        if next_add not in lists[i][1]:
            lists[i][0].append(next_add)
            lists[i][1].extend([next_add + old for old in lists[i][0]])
            if next_add > best:
                best = next_add
                for l in lists:
                    print(l[0])
                print(time(), clock(), next_add, end='\n\n')
            next_add += 1
            break

哇,这看起来与我的代码极为相似。:P;)(我一点也不介意。)
El'endia Starman 2015年

@ El'endiaStarman Credit已添加。这是一个很好的基础。
isaacg 2015年

7

爪哇8,N = 142 144

最后输出:

@ 0m 31s 0ms
n: 144
[9, 12, 17, 20, 22, 23, 28, 30, 33, 38, 41, 59, 62, 65, 67, 70, 72, 73, 75, 78, 80, 83, 86, 91, 107, 115, 117, 122, 123, 125, 128, 133, 136]
[3, 8, 15, 24, 25, 26, 31, 35, 45, 47, 54, 58, 64, 68, 81, 87, 98, 100, 110, 114, 119, 120, 121, 130, 137, 142]
[5, 13, 16, 19, 27, 36, 39, 42, 48, 50, 51, 94, 95, 97, 103, 106, 109, 112, 118, 126, 129, 132, 138, 140, 141]
[2, 6, 11, 14, 34, 37, 44, 53, 56, 61, 69, 76, 79, 84, 89, 92, 101, 104, 108, 111, 124, 131, 134, 139, 143, 144]
[1, 4, 7, 10, 18, 21, 29, 32, 40, 43, 46, 49, 52, 55, 57, 60, 63, 66, 71, 74, 77, 82, 85, 88, 90, 93, 96, 99, 102, 105, 113, 116, 127, 135]

执行分布在4个线程上的种子随机搜索。当找不到适合的分区时n,它尝试n通过将尽可能多的数据转储到另一个分区中来一次释放一个分区中的空间。

编辑:调整了用于释放空间的算法n,还增加了返回到先前选择并再次选择的功能。

注意:输出不是严格确定的,因为涉及多个线程,它们最终可能会n以混乱的顺序更新迄今为止找到的最佳线程;最终得分144是确定性的,并且可以很快达到:在我的计算机上为30秒。

代码是:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Deque;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;

public class SumFree {

    private static int best;

    public static void main(String[] args) {
        int k = 5; // Integer.valueOf(args[0]);
        int numThreadsPeterTaylorCanHandle = 4;

        long start = System.currentTimeMillis();
        long end = start + TimeUnit.MINUTES.toMillis(10);

        System.out.println(start);

        Random rand = new Random("Lucky".hashCode());
        for (int i = 0; i < numThreadsPeterTaylorCanHandle; i++) {
            new Thread(() -> search(k, new Random(rand.nextLong()), start, end)).start();
        }
    }

    private static void search(int k, Random rand, long start, long end) {
        long now = System.currentTimeMillis();
        int localBest = 0;

        do {
            // create k empty partitions
            List<Partition> partitions = new ArrayList<>();
            for (int i = 0; i < k; i++) {
                partitions.add(new Partition());
            }

            Deque<Choice> pastChoices = new ArrayDeque<>();
            int bestNThisRun = 0;

            // try to fill up the partitions as much as we can
            for (int n = 1;; n++) {
                // list of partitions that can fit n
                List<Partition> partitionsForN = new ArrayList<>(k);
                for (Partition partition : partitions) {
                    if (!partition.sums.contains(n)) {
                        partitionsForN.add(partition);
                    }
                }

                // if we can't fit n anywhere then try to free up some space
                // by rearranging partitions
                Set<Set<Set<Integer>>> rearrangeAttempts = new HashSet<>();
                rearrange: while (partitionsForN.size() == 0 && rearrangeAttempts
                        .add(partitions.stream().map(Partition::getElements).collect(Collectors.toSet()))) {

                    Collections.shuffle(partitions, rand);
                    for (int candidateIndex = 0; candidateIndex < k; candidateIndex++) {
                        // partition we will try to free up
                        Partition candidate = partitions.get(candidateIndex);
                        // try to dump stuff that adds up to n into the other
                        // partitions
                        List<Integer> badElements = new ArrayList<>(candidate.elements.size());
                        for (int candidateElement : candidate.elements) {
                            if (candidate.elements.contains(n - candidateElement)) {
                                badElements.add(candidateElement);
                            }
                        }
                        for (int i = 0; i < k && !badElements.isEmpty(); i++) {
                            if (i == candidateIndex) {
                                continue;
                            }

                            Partition other = partitions.get(i);

                            for (int j = 0; j < badElements.size(); j++) {
                                int candidateElement = badElements.get(j);
                                if (!other.sums.contains(candidateElement)
                                        && !other.elements.contains(candidateElement + candidateElement)) {
                                    boolean canFit = true;
                                    for (int otherElement : other.elements) {
                                        if (other.elements.contains(candidateElement + otherElement)) {
                                            canFit = false;
                                            break;
                                        }
                                    }

                                    if (canFit) {
                                        other.elements.add(candidateElement);
                                        for (int otherElement : other.elements) {
                                            other.sums.add(candidateElement + otherElement);
                                        }
                                        candidate.elements.remove((Integer) candidateElement);
                                        badElements.remove(j--);
                                    }
                                }
                            }
                        }

                        // recompute the sums
                        candidate.sums.clear();
                        List<Integer> elementList = new ArrayList<>(candidate.elements);
                        int elementListSize = elementList.size();
                        for (int i = 0; i < elementListSize; i++) {
                            int ithElement = elementList.get(i);
                            for (int j = i; j < elementListSize; j++) {
                                int jthElement = elementList.get(j);
                                candidate.sums.add(ithElement + jthElement);
                            }
                        }

                        // if candidate can now fit n then we can go on
                        if (!candidate.sums.contains(n)) {
                            partitionsForN.add(candidate);
                            break rearrange;
                        }
                    }
                }

                // if we still can't fit in n, then go back in time to our last
                // choice (if it's saved) and this time choose differently
                if (partitionsForN.size() == 0 && !pastChoices.isEmpty() && bestNThisRun > localBest - localBest / 3) {
                    Choice lastChoice = pastChoices.peek();
                    partitions = new ArrayList<>(lastChoice.partitions.size());
                    for (Partition partition : lastChoice.partitions) {
                        partitions.add(new Partition(partition));
                    }
                    n = lastChoice.n;
                    Partition partition = lastChoice.unchosenPartitions
                            .get(rand.nextInt(lastChoice.unchosenPartitions.size()));
                    lastChoice.unchosenPartitions.remove(partition);
                    partition = partitions.get(lastChoice.partitions.indexOf(partition));
                    partition.elements.add(n);
                    for (int element : partition.elements) {
                        partition.sums.add(element + n);
                    }
                    if (lastChoice.unchosenPartitions.size() == 0) {
                        pastChoices.pop();
                    }
                    continue;
                }

                if (partitionsForN.size() > 0) {
                    // if we can fit in n somewhere,
                    // pick that somewhere randomly
                    Partition chosenPartition = partitionsForN.get(rand.nextInt(partitionsForN.size()));
                    // if we're making a choice then record it so that we may
                    // return to it later if we get stuck
                    if (partitionsForN.size() > 1) {
                        Choice choice = new Choice();
                        choice.n = n;
                        for (Partition partition : partitions) {
                            choice.partitions.add(new Partition(partition));
                        }
                        for (Partition partition : partitionsForN) {
                            if (partition != chosenPartition) {
                                choice.unchosenPartitions.add(choice.partitions.get(partitions.indexOf(partition)));
                            }
                        }
                        pastChoices.push(choice);

                        // only keep 3 choices around
                        if (pastChoices.size() > 3) {
                            pastChoices.removeLast();
                        }
                    }

                    chosenPartition.elements.add(n);
                    for (int element : chosenPartition.elements) {
                        chosenPartition.sums.add(element + n);
                    }
                    bestNThisRun = Math.max(bestNThisRun, n);
                }

                if (bestNThisRun > localBest) {
                    localBest = Math.max(localBest, bestNThisRun);

                    synchronized (SumFree.class) {
                        now = System.currentTimeMillis();

                        if (bestNThisRun > best) {
                            // sanity check
                            Set<Integer> allElements = new HashSet<>();
                            for (Partition partition : partitions) {
                                for (int e1 : partition.elements) {
                                    if (!allElements.add(e1)) {
                                        throw new RuntimeException("Oops!");
                                    }
                                    for (int e2 : partition.elements) {
                                        if (partition.elements.contains(e1 + e2)) {
                                            throw new RuntimeException("Oops!");
                                        }
                                    }
                                }
                            }
                            if (allElements.size() != bestNThisRun) {
                                throw new RuntimeException("Oops!" + allElements.size() + "!=" + bestNThisRun);
                            }

                            best = bestNThisRun;
                            System.out.printf("@ %dm %ds %dms\n", TimeUnit.MILLISECONDS.toMinutes(now - start),
                                    TimeUnit.MILLISECONDS.toSeconds(now - start) % 60, (now - start) % 1000);
                            System.out.printf("n: %d\n", bestNThisRun);
                            for (Partition partition : partitions) {
                                // print in sorted order since everyone else
                                // seems to to that
                                List<Integer> partitionElementsList = new ArrayList<>(partition.elements);
                                Collections.sort(partitionElementsList);
                                System.out.println(partitionElementsList);
                            }
                            System.out.printf("timestamp: %d\n", now);
                            System.out.println("------------------------------");
                        }
                    }
                }

                if (partitionsForN.size() == 0) {
                    break;
                }
            }
        } while (now < end);
    }

    // class representing a partition
    private static final class Partition {

        // the elements of this partition
        Set<Integer> elements = new HashSet<>();

        // the sums of the elements of this partition
        Set<Integer> sums = new HashSet<>();

        Partition() {
        }

        Partition(Partition toCopy) {
            elements.addAll(toCopy.elements);
            sums.addAll(toCopy.sums);
        }

        Set<Integer> getElements() {
            return elements;
        }
    }

    private static final class Choice {
        int n;
        List<Partition> partitions = new ArrayList<>();
        List<Partition> unchosenPartitions = new ArrayList<>();
    }
}

5

C,随机贪婪,n = 91

只是为了提供基准解决方案,它会进行迭代n,跟踪垃圾箱及其总和,并添加n到尚未显示​​总和的随机垃圾箱中。一旦n出现所有k总和,它就会终止,如果结果n比以前的尝试要好,则将其打印到STDOUT。

输入k是通过命令行参数提供的。当前最大可能k的硬编码为10,因为我太懒了添加动态内存分配,但是可以很容易地解决。

我想我现在可以去寻找更好的种子了,但是无论如何,这个答案可能并不是特别有竞争力。

这是分区n = 91

1 5 12 18 22 29 32 35 46 48 56 59 62 69 72 76 79 82 86 89
2 3 10 11 16 17 25 30 43 44 51 52 57 64 71 83 84 90 91
6 8 13 15 24 31 33 38 40 42 49 54 61 63 65 77 81 88
9 14 19 21 27 34 37 45 60 67 70 73 75 78 80 85
4 7 20 23 26 28 36 39 41 47 50 53 55 58 66 68 74 87

最后,这是代码:

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define MAX_K 10
#define MAX_N 1024

int main(int argc, char **argv) {
    if (argc < 2)
    {
        printf("Pass in k as a command-line argument");
        return 1;
    }

    printf("%u\n", (unsigned)time(NULL)); 

    int k = atoi(argv[1]);

    int sizes[MAX_K];
    int bins[MAX_K][MAX_N];
    int sums[MAX_K][2*MAX_N];
    int selection[MAX_K];
    int available_bins;

    int best = 0;

    srand(1447101176);

    while (1)
    {
        int i,j;
        for (i = 0; i < k; ++i)
            sizes[i] = 0;
        for (i = 0; i < k*MAX_N; ++i)
            bins[0][i] = 0;
        for (i = 0; i < k*MAX_N*2; ++i)
            sums[0][i] = 0;
        int n = 1;
        while (1)
        {
            available_bins = 0;
            for (i = 0; i < k; ++i)
                if (!sums[i][n])
                {
                    selection[available_bins] = i;
                    ++available_bins;
                }

            if (!available_bins) break;

            int bin = selection[rand() % available_bins];

            bins[bin][sizes[bin]] = n;
            ++sizes[bin];
            for (i = 0; i < sizes[bin]; ++i)
                sums[bin][bins[bin][i] + n] = 1;

            ++n;
        }

        if (n > best)
        {
            best = n;
            for (i = 0; i < k; ++i)
            {
                for (j = 0; j < sizes[i]; ++j)
                    printf("%d ", bins[i][j]);
                printf("\n");
            }
            printf("%u\n", (unsigned)time(NULL));
        }
    }

    return 0;
}

确认n=91,在138秒内找到。如果需要平局,我将重新计时以避免由于不同的CPU负载而导致的大错误。
彼得·泰勒

3

C ++,135

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <set>
#include <vector>
#include <algorithm>


using namespace std;

vector<vector<int> > subset;
vector<int> len, tmp;
set<int> sums;

bool is_sum_free_with(int elem, int subnr) {
    sums.clear();
    sums.insert(elem+elem);
    for(int i=0; i<len[subnr]; ++i) {
        sums.insert(subset[subnr][i]+elem);
        for(int j=i; j<len[subnr]; ++j) sums.insert(subset[subnr][i]+subset[subnr][j]);
    }
    if(sums.find(elem)!=sums.end()) return false;
    for(int i=0; i<len[subnr]; ++i) if(sums.find(subset[subnr][i])!=sums.end()) return false;
    return true;
}

int main()
{
    int k = 0; cin >> k;

    int start=time(0);
    cout << start << endl;

    int allmax=0, cnt=0;
    srand(0);

    do {
        len.clear();
        len.resize(k);
        subset.clear();
        subset.resize(k);
        for(int i=0; i<k; ++i) subset[i].resize((int)pow(3, k));

        int n=0, last=0, c, y, g, h, t, max=0;
        vector<int> p(k);

        do {
            ++n;
            c=-1;
            for(int i=0; i++<k; ) {
                y=(last+i)%k;
                if(is_sum_free_with(n, y)) p[++c]=y;
            }

            if(c<0) --n;

            t=n;

            while(c<0) {
                g=rand()%k;
                h=rand()%len[g];
                t=subset[g][h];
                for(int l=h; l<len[g]-1; ++l) subset[g][l]=subset[g][l+1];
                --len[g];
                for(int i=0; i++<k; ) {
                    y=(g+i)%k;
                    if(is_sum_free_with(t, y) && y!=g) p[++c]=y;
                }
                if(c<0) subset[g][len[g]++]=t;
            }

            c=p[rand()%(c+1)];
            subset[c][len[c]++]=t;

            last=c;

            if(n>max) {
                max=n;
                cnt=0;
                if(n>allmax) {
                    allmax=n;
                    for(int i=0; i<k; ++i) {
                        tmp.clear();
                        for(int j=0; j<len[i]; ++j) tmp.push_back(subset[i][j]);
                        sort(tmp.begin(), tmp.end());
                        for(int j=0; j<len[i]; ++j) cout << tmp[j] << " ";
                        cout << endl;
                    }
                    cout << time(0) << " " << time(0)-start << " " << allmax << endl;
                }

            }

        } while(++cnt<50*n && time(0)-start<600);

        cnt=0;

    } while(time(0)-start<600);

    return 0;
}

将下一个n附加到随机选择的子集。如果不可能的话,它会从子集中删除随机数,并将其附加到其他子集上,以期能够将n附加到某个地方。

我在awk中对此进行了原型设计,并且由于它看起来很有希望,因此我将其翻译为C ++以加快速度。用一个std::set甚至可以加快速度。

输出为n = 135(在我的[旧]机器上大约230秒后)

2 6 9 10 13 17 24 28 31 35 39 42 43 46 50 57 61 68 75 79 90 94 97 101 105 108 119 123 126 127 130 131 134 
38 41 45 48 51 52 55 56 58 59 62 64 65 66 67 69 70 71 72 74 78 80 81 84 85 87 88 91 95 98 
5 12 15 16 19 22 23 25 26 29 33 36 73 83 93 100 103 107 110 111 113 114 117 120 121 124 
1 4 11 14 21 27 34 37 40 47 53 60 76 86 89 96 99 102 109 112 115 122 125 132 135 
3 7 8 18 20 30 32 44 49 54 63 77 82 92 104 106 116 118 128 129 133 

我没有重新检查有效性,但是应该没问题。


2

Python 3,随机贪婪,n = 61

最后输出:

[5, 9, 13, 20, 24, 30, 32, 34, 42, 46, 49, 57, 61]
[8, 12, 14, 23, 25, 44, 45, 47, 54]
[2, 6, 7, 19, 22, 27, 35, 36, 39, 40, 52, 53, 56]
[3, 10, 15, 16, 17, 29, 37, 51, 55, 59, 60]
[1, 4, 11, 18, 21, 26, 28, 31, 33, 38, 41, 43, 48, 50, 58]

它有效地使用了与MartinBüttner相同的算法,但是我独立开发了它。

k到目前为止,有些垃圾箱中既有数字,也有垃圾箱。在迭代的每个深度(基本上是深度优先搜索)中,将对bin进行排序,然后将下一个数字(nextN)依次放入可以使用的bin中,然后再深一层。如果没有,则返回,备份一步。

from copy import deepcopy
from random import shuffle, seed
from time import clock, time
global maxN
maxN = 0
clock()
seed(0)

def search(k,nextN=1,sets=None):
    global maxN
    if clock() > 600: return

    if nextN == 1: #first iteration
        sets = []
        for i in range(k):
            sets.append([[],[]])

    R = list(range(k))
    shuffle(R)
    for i in R:
        if clock() > 600: return
        if nextN not in sets[i][1]:
            sets2 = deepcopy(sets)
            sets2[i][0].append(nextN)
            sets2[i][1].extend([nextN+j for j in sets2[i][0]])
            nextN2 = nextN + 1

            if nextN > maxN:
                maxN = nextN
                print("New maximum!",maxN)
                for s in sets2: print(s[0])
                print(time())
                print()

            search(k, nextN2, sets2)

search(5)

2

Python,n = 31

import sys
k = int(sys.argv[1])

for i in range(k):
    print ([2**i * (2*j + 1) for j in range(2**(k - i - 1))])

好的,所以它显然不是赢家,但我还是觉得它属于这里。我采取自由的做法是不包括时间戳记,因为时间戳记会立即终止,并且不是真正的竞争者。

首先,请注意,任何两个奇数之和为偶数,因此我们可以将所有奇数转储到第一个块中。然后,由于所有剩余的数字都是偶数,我们可以将它们除以2。再一次,我们可以将所有得到的奇数放在第二个块中(将它们再乘以2之后),然后将剩余的数字除以2(即,将其总和减去4),将奇数放在第三个块中(将它们再乘以4之后),依此类推……或者,用你们能理解的话,我们将所有最低有效位的数字都放入bit是第一个块中的第一位,所有最低有效置位位是第二个块中的第二位的所有数字,依此类推...

对于ķ块,我们遇到麻烦,一旦我们达到Ñ = 2 ķ,由于的至少-显著设置位Ñ
所述(ķ + 1)个比特,其不对应于任何块。换句话说,该方案的工作量最大
n = 2 k -1。因此,当k = 5时,我们仅得到微不足道的n = 31,该数字随k呈指数增长。它还确定Sk)≥2 k -1(但实际上我们可以很容易地找到比其更好的下限。)

作为参考,以下是k = 5 的结果:

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31]
[2, 6, 10, 14, 18, 22, 26, 30]
[4, 12, 20, 28]
[8, 24]
[16]

有一种简单的方法可以挤出一个额外的数字:将奇数的上半部分移到任何其他类别中(因为它们的总和必然大于该类别中已有的任何数字),然后将2 ^ k加到奇数。可以将相同的想法扩展为另一个lg k个数字,甚至另一个k。
彼得·泰勒

@PeterTaylor是的,发布后不久,我意识到这实际上是微不足道的。这等效于do [1], [2,3], [4,5,6,7], ...,这可能更简单,只是具有相反的位和块顺序。很容易看出这一扩展方式。
2015年
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.