我开始研究这个问题,到目前为止,我想为我的代码做贡献。正如Gareth所说,该问题与8块拼图相当,因此代码基于Keith Randall的宏伟解决方案,因此也是基于Python的。此解决方案可以解决总共5个测试案例(总动作少于400个动作)以及其他难题。它包含一个优化的蛮力解决方案。现在,该代码有点is肿。输出缩写为“ llururd ..”,希望它有所帮助。
http://www.penschuck.org/joomla/tmp/15Tile.txt(说明)
 http://www.penschuck.org/joomla/tmp/tile15.txt(Python代码)
# Author: Heiko Penschuck
# www.penschuck.org
# (C) 2012
# import os;os.chdir('work')
# os.getcwd()
# def execfile(file, globals=globals(), locals=locals()):
#   with open(file, "r") as fh: exec(fh.read()+"\n", globals, locals)
# 
#
# execfile("tile15.py");
#
## run these
# solve_brute();
# solve();
# some boards to play with
board2=(15,14,7,3,13,10,2,9,11,12,4,6,5,0,1,8);
# best: 76(52)  
#    72(56) 
#   68(51)      uurddlurrulldrrdllluuruldrddlururulddruurdllldrurddlurdruuldrdluurdd
board3=(13, 8, 9, 4, 15, 11, 5, 3, 14, 6, 12, 7, 1, 10, 2, 0)
# best: 106(77) 
#best: 90(64)   ullldruuldrrdrlluurulldrrdldluruulddrulurrdrddlluuurdldrrulddrulldrurullldrdluurrrddllurdr
board4=(4, 8, 12, 1, 13, 7, 3, 11, 9, 15, 6, 14, 5, 2, 10, 0) ;# best  100(74)
board5=(15,2,3,4,5,6,7,8,9,10,11,12,13,1,14,0); # best 44(32)
board6=( 1, 2,  3,  4, 6, 11,  0, 12, 8, 14,  9, 13, 5, 10,  7, 15);
# testcases
board7=(5,1,7,3,9,2,11,4,13,6,15,8,0,10,14,12); #   15 (7)
board8=(2,5,13,12,1,0,3,15,9,7,14,6,10,11,8,4); #  124 (94)
board9=(5,2,4,8,10,0,3,14,13,6,11,12,1,15,9,7) ; #  72 (56)
board10=(11,4,12,2,5,10,3,15,14,1,6,7,0,9,8,13) ;# 71 (57)
board11=(5,8,7,11,1,6,12,2,9,0,13,10,14,3,4,15) ;# 99 (73)
board12=(1,2,3,4,5,6,7,8,9,10,11,12,13,0,14,15); #pretty simple board
board13=(4, 10, 5, 12, 11, 7, 15, 2, 13, 1, 14, 8, 6, 3, 9, 0)
board=board3 ; # used by solve()
bboard=list(board) ;# used by solve_brute()
# init 
clean=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)
i=0;
solution={};
invsolution={};
E={board:0}
# derived from Keith Randall 8-tile solution
# a: a board, d: offset to move from i: index in board
def Y(a,d,i):
 b=list(a); # b is now an indexable board
 b[i],b[i+d]=b[i+d],0; # make a move (up down left right)
 b=tuple(b); # now back to searchable
 if b not in E:E[b]=a;# store new board in E
def Calc():
 ii=0;
 # memory error when x is 21
 for x in ' '*14:
  if ii>10:
   print(ii);
  ii+=1
  for a in E.copy():
   # for all boards, make possible moves (up,left,right,down) and store the new boards
   i=list(a).index(0)
   if i>3:Y(a,-4,i)
   if i%4:Y(a,-1,i)
   if i%4 <3:Y(a,1,i)
   if i<12:Y(a,4,i)
def weigh(a,goal):
    factor=[26,8,4,6, 8,8,4,4, 4,4,1,1, 3,2,1,0]
    weight=0;
    for element in a:
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        if element == 0:
            # special for gap
            weight=weight+ix;
            #weight+=(ix+iy)
            continue;
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        j=list(goal).index(element);
        sx,sy=divmod(j,4); # soll
        #k=list(a).index(0); # gap
        #kx,ky=divmod(k,4)
        # try solving from topleft to bottom right (because clean board has gap at bottomright)
        tmp= abs(sx-ix)*abs(sx-ix)*factor[j]+ abs(sy-iy)*abs(sy-iy)*factor[j]
        #tmp += ((sx!=ix )& (sy!=iy)) *(4-sx)*(4-sy)*4
        weight+=tmp
        #(10-sx-sy-sy)
        # 8*abs(sx-ix) + (16-j)*(sx!=ix)
        #print('%2d   %2d_%2d (%2d_%2d)=> %d'%(element,i,j,(sx-ix),(sy-iy),weight))
    return weight
# read numbers seperated by a whitespace
def readboard():
    global E,D,board,clean,i
    reset()
    g=[]
    for x in' '*4:g+=map(int,input().split())
    board=tuple(g)
# read 'a' till 'o'
def readasciiboard():
    global E,D,board,clean,i
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    reset()
    g=[]
    vec=tuple(input().split());
    for x in vec: g.append(trans[x])
    board=tuple(g)
def printasciiboard(a):
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    itrans={}
    for x in trans: itrans[trans[x]]=x
    g=[]
    for x in a: g.append(itrans[x])
    for i in(0,4,8,12): print('%s %s %s %s'%tuple(g[i:i+4]))
# find the board with the smallest weight
def minimum():
    global minn,E,clean
    minn=1111111;# start with a huge number
    qq=board
    for q in E:
        if weigh(q,clean) < minn: 
            minn=weigh(q,clean)
            qq=q
    return qq
# run this and printsolution()
# (you might have to reverse the order of the printed solution)
def solve():
    global start,board,E,clean,minn,solution
    start=board;
    solution={};
    E={ board:0 }
    for x in range(0,11):
        Calc(); # walks all possible moves starting from board to a depth of 10~20 moves
        if clean in E:
            print('Solution found')
            q=clean;
            tmp=[];
            while q:
                tmp.append(q)
                q=E[q]
            for x in reversed(tmp):
                solution[len(solution)]=x;
            printsolution();
            return
        q=minimum();  # calculates the "weight" for all Calc()-ed boards and returns the minimum
        #print("Len %3d"%len(E))
        print("weight %d"%minn)
#       stitch solution
        newboard=q;
        tmp=[];
        while q:
            tmp.append(q)
            q=E[q]
        for x in reversed(tmp):
            solution[len(solution)]=x;
        board=newboard;
        E={board:0}; #reset the Calc()-ed boards
    print("No Solution")
# collects and prints the moves of the solution
# from clean board to given board
# (you have to reverse the order)
def printsolution():
    global invsolution,solution,moves,clean,start
    moves=""
    g=start; # start from board to clean
    y=g
    #invsolution[clean]=0;
    for x in solution:
        # uncomment this if you want to see each board of the solution
        #print(g);
        g=solution[x];
        #sys.stdout.write(transition(y,g))
        if (transition(g,y)=="E"): continue
        moves+=transition(g,y)
        # or as squares
        #print('%10s %d %s'%("step",len(moves),transition(g,y)));
        #print(" %s -- %s "%(y,g))
        #for i in(0,4,8,12): print('%2d %2d %2d %2d'%g[i:i+4])
        y=g         
    llen=len(moves)
    print(" moves%3d "%llen)
    print(moves)
    # processing moves. funny, but occysionally ud,du,lr or rl appears due to the stitching
    while 'lr' in moves:
        a,b,c=moves.partition('lr')
        moves=a+c
        llen-=2
    while 'rl' in moves:
        a,b,c=moves.partition('rl')
        moves=a+c
        llen-=2
    while 'ud' in moves:
        a,b,c=moves.partition('ud')
        moves=a+c
        llen-=2
    while 'du' in moves:
        a,b,c=moves.partition('du')
        moves=a+c
        llen-=2
    # processing moves. concatenating lll to 3l
    while 'lll' in moves:
        a,b,c=moves.partition('lll')
        moves=a+' 3l '+c
        llen-=2
    while 'rrr' in moves:
        a,b,c=moves.partition('rrr')
        moves=a+' 3r '+c
        llen-=2
    while 'uuu' in moves:
        a,b,c=moves.partition('uuu')
        moves=a+' 3u '+c
        llen-=2
    while 'ddd' in moves:
        a,b,c=moves.partition('ddd')
        moves=a+' 3d '+c
        llen-=2
    while 'll' in moves:
        a,b,c=moves.partition('ll')
        moves=a+' 2l '+c
        llen-=1
    while 'rr' in moves:
        a,b,c=moves.partition('rr')
        moves=a+' 2r '+c
        llen-=1
    while 'uu' in moves:
        a,b,c=moves.partition('uu')
        moves=a+' 2u '+c
        llen-=1
    while 'dd' in moves:
        a,b,c=moves.partition('dd')
        moves=a+' 2d '+c
        llen-=1
    print(" processed:%3d "%llen)
    print(moves)
    return
def transition(a,b):
    # calculate the move (ie up,down,left,right)
    # between 2 boards (distance of 1 move and a weight of 1 only)
    i=list(a).index(0);
    j=list(b).index(0);
    if (j==i+1): return "l"
    if (j==i-1): return "r"
    if (j==i-4): return "d"
    if (j==i+4): return "u"
    #print("transition not possible")
    return "E"
###################################################
# below this line are functions for the brute force solution only
# added for comparision
#
# its using a global variable bboard and works destructively on it
def solve_brute():
    global bboard,board;
    bboard=list(board); # working copy
    move(1,0);move(2,1);
    move(3,14); # <== additional move, move 3 out of way
    move(4,2);move(3,6);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_up();gap_left();gap_down();
    #first line solved
    print("first line");printbboard();
    move(5,4);move(6,5);move(7,14);move(8,6);move(7,10);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_left();gap_down();
    #second line solved (upper half)
    print("2nd line");printbboard();
    move(9,15);move(13,8);move(9,9)
    gap_down();gap_left();gap_left();gap_up();gap_right();
    print("left border");printbboard();
    #left border solved
    move(10,15);move(14,9);move(10,10);
    gap_down();movegap(1+3*4);gap_up();gap_right();
    print("left half");printbboard();
    #left half solved
    #rotating last 4 tiles 5 times
    for x in ' '*5:
        gap_right();gap_down(); # gap is now on 15
        if (bboard==[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0]):
            print("solution found");printbboard();          
            return;
        gap_left();gap_up();
    print("No solution found");
    printbboard();
    return
def printbboard():
    global bboard
    for i in(0,4,8,12): print('%2d %2d %2d %2d'%tuple(bboard[i:i+4]))
def gap_up():
    global bboard
    i=bboard.index(0);
    if (i<4):
        print("Err up()")
        return
    bboard[i],bboard[i-4] = bboard[i-4] , 0 ;
def gap_down():
    global bboard
    i=bboard.index(0);
    if (i>11):
        print("Err down()")
        return
    bboard[i],bboard[i+4] = bboard[i+4] , 0 ;
def gap_left():
    global bboard
    i=bboard.index(0);
    if (i%4<1):
        print("Err left()")
        return  
    bboard[i],bboard[i-1]= bboard[i-1] , 0 ;
def gap_right():
    global bboard
    i=bboard.index(0);
    if (i%4>2):
        print("Err right()")
        return
    bboard[i],bboard[i+1] = bboard[i+1] , 0 ;
def movegap(d): 
    global bboard;
    # d: destination location (0-15)
    k=bboard.index(0);
    ky,kx=divmod(k,4);
    dy,dx=divmod(d,4);
    # moving the gap
    while (ky>dy): 
        gap_up();ky-=1;
    while (ky<dy):
        gap_down();ky+=1;
    while (kx>dx):
        gap_left();kx-=1;
    while (kx<dx):
        gap_right();kx+=1;
def move(s,d):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    dy,dx=divmod(d,4);
    #moving a number
    while (ix<dx):
        move1right(s);
        print("1right ");
        ix+=1;
    while (ix>dx):
        move1left(s);
        ix-=1;
        print("1left ");
    while(iy<dy):
        move1down(s);
        print("1down ");
        iy+=1;
    while(iy>dy):
        move1up(s);
        print("1up");
        iy-=1;
def move1up(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # above: move 1 above, then leftorright, then 1 down
        movegap(kx+4*(iy-1))
        movegap(ix+4*(iy-1))
        movegap(ix+4*iy)
        return; # fin
    if (ky==iy):
        # if equal, then first try 1 down
        # (not nescessary if gap is right of s)
        if (kx<ix):
            if (ky<=2):
                movegap(kx+4*(iy+1))
                movegap(ix+1+4*(iy+1)); # 1right 1down of s
                movegap(ix+1+4*(iy-1)); # 1right 1up of s
                movegap(ix+4*(iy-1));# right over s
                gap_down(); # fin
                return;
            # bottom border, must go up first
            movegap(kx+4*(iy-1));
            movegap(ix+4*(iy-1));
            gap_down();
            return; # fin
        else:
            movegap(ix+1+4*iy); # move 1 right of s
            gap_up()
            gap_left()
            gap_down();
            return; # fin
    movegap(ix+1+4*ky); # move 1 right of s
    movegap(ix+1+4*(iy+1)); # move 1 right and 1 down of s
    gap_up();
    gap_up();
    gap_left();
    gap_down();
def move1left(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # if above gap move 1 over s
        if (kx<ix):
            movegap(kx+4*iy);
            movegap(ix+4*iy);
            return;# fin
        if (kx==ix):
            #gap over s
            if (ix<3):
                # try to move under s and then left
                if (iy<3):
                    movegap(ix+1+4*ky)
                    movegap(ix+1+4*(iy+1))
                    movegap(ix-1+4*(iy+1))
                    movegap(ix-1+4*iy)
                    movegap(ix+4*iy)
                    return; #fin
            # have to move left         
            movegap(kx-1+4*ky)  
            movegap(ix-1+4*iy)
            movegap(ix+4*iy)
            return;# fin
        # move 1 right of s
        if (iy==3):
            # cant go under, have to go left over
            movegap(kx+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(ix+1+4*(iy-1))
        gap_down();gap_down();gap_left();gap_left();gap_up();gap_right();
        return; #fin
    if (ky==iy):
        if (kx<ix):
            movegap(ix-1+4*iy)
            gap_right();
            return; # fin
        if (ky<3):
            gap_down();
            ky+=1;
        else:
            #have to move up
            movegap(ix+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            gap_right();
            return; #fin
    # gap below s
    movegap(ix+4*(iy+1));
    gap_left();gap_up();gap_right();
def move1right(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        if (kx==ix):
            movegap(kx+1+4*ky)
            movegap(kx+1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*iy)
        if (kx>ix):
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*(iy+1))
        movegap(ix+1+4*(iy+1))
        movegap(ix+1+4*iy);
        movegap(ix+4*iy);
        return; #fin
    if (ky==iy):
        if (kx<ix):
            if (ky>2):
                # bottom row, left of s, have to move 1 up
                gap_up()
                # move 1 right 1 up of s
                movegap(ix+1+4*(ky-1));
                gap_down()
                gap_left()
                return; # fin
            # first 1 down
            movegap(kx+4*(ky+1))
            # to the right of s
            movegap(ix+1+4*(ky+1))
            gap_up()
            gap_left()
            return; # fin
        # already 1 right of s
        movegap(ix+4*iy);
        return; #fin
    # move gap 1 right and 1 down of s
    movegap(kx+4*(iy+1))
    movegap(ix+1+4*(iy+1))
    gap_up();
    gap_left();
def move1down(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # gap is over s, move it below
        if (kx==ix):
            if (ix>2):
                # right border, have to move 1 to the left
                movegap(kx+4*(iy-1))
                movegap(kx-1+4*(iy-1))
                movegap(kx-1+4*(iy+1))
                gap_up();
                return; #fin
            # move right of s
            movegap(kx+4*(iy-1))
            movegap(kx+1+4*(iy-1))
            movegap(kx+1+4*(iy+1))
            movegap(kx+4*(iy+1))
            gap_up(); #fin
        movegap(kx+4*(iy+1))
        movegap(ix+4*(iy+1))
        gap_up(); #fin
    if (ky==iy):
        gap_down();
        ky+=1;
    # gap is below s, move 1 under s
    movegap(ix+4*(iy+1))
    gap_up();
    #fin