打高尔夫球的Flak整型


28

整数很难用Brain-Flak表示。有8个运算子:

()      Evaluates to 1, but does not push anything on any stack
[]      Evaluates to an indeterminate value for the purposes of this question
{}      Removes the top of the stack and evaluates to it
<>      Switches to or back from the alternate stack and evaluates to zero
(foo)   Pushes the value of the expression foo to the stack and evaluates to it
[foo]   Evaluates to the negation of foo
{foo}   Evaluates the expression foo until the top of the stack is zero
<foo>   Evaluates to zero but executes foo anyway

foo可能包含多个运算符,在这种情况下,将对它们进行求和和。例如(()())2到堆栈(和计算结果为2太)。

显然,该(()...())机制在Code Golf中没有用,因为大量数据需要n*2+2字节来表示。因此,您面临的挑战是编写一个程序或函数,该程序或函数将以尽可能少的字节输出Brain-Flak程序,该程序会将给定的正整数压入n活动堆栈。该程序不得对堆栈的现有内容进行任何假设,因此它不得交换堆栈或从堆栈中添加或删除多余的值。

尽管您的程序或函数必须能够返回从1到1,000,000的所有输入的有效Brain-Flak程序,但获胜者将是为1,000至2,000之间的所有1061质数生成最小的一组适当Brain-Flak程序的程序或函数。。您应该在提交的过程中记下这些1061输入的输出总大小。您的程序或函数可以接受整数,并以任何通常可接受的I / O格式返回(字符串)Brain-Flak程序。根据程序或函数的大小,关系会断开。


4
请注意,有效程序长度2n4^n catalan(n)
Leaky Nun

2
嗯,我喜欢挑战,但我认为应该在未知整数上评分。否则,对整数程序进行评分可能是蛮力的,而其他整数则保留为(()()()...())。另外,如果仅使用质数,则可能会错过复合材料可能进行的某些优化。
DJMcMayhem

另外,为什么[]对这个挑战没有定义?我发现实现8个运算符中的7个很奇怪。无论哪种方式,很酷的挑战,我很荣幸有人会写一个受我自己语言启发的挑战!
DJMcMayhem

2
@DJMcMayhem我希望人们能够计算自己的分数。所有相关的质数都比合成数大1,因此应该有很多潜在的优化方法。而且,我不希望人们[]在回答中依赖特定的价值。
尼尔,2016年

1
@YetiCGN脚本的大小仅视为平局。
尼尔,

Answers:


16

蟒蛇2,59394 59244 58534 58416 58394 58250

好的,这是我的解决方案。

import re
import math

cache = {0:"<()>"}

def find(x,i,j):
    return i*((x**2+x)/2)+(j+1)*((x**2-x)/2)

def solve(x, i, j):
    a = (i + j + 1)/2.
    b = (i - j - 1)/2.
    c = -x
    return (-b + math.sqrt(b**2 - 4*a*c))/(2*a)

def size(i,j=0):
    return 4*(i+j)+14

def polynomials(n):
    upperBound = int(4*math.log(n,2))
    i = 0
    answers = []
    while size(i) < upperBound:
        for j in range(i):
            sol = int(solve(n, i-j, j)+.5)
            if find(sol, i-j, j) == n:
                answers.append((sol, i-j, j))
        i += 1
    return answers

def complement(character):
        dict = {"(":")","{":"}","<":">","[":"]",")":"(","}":"{",">":"<","]":"["}
        return dict[character]

def findMatch(snippet, index):
        increment = 1 if snippet[index] in "({<[" else -1
        stack = []
        if snippet[index] in "(){}<>[]":
                stack.append(snippet[index])
        while len(stack) > 0 and index + increment < len(snippet):
                index += increment
                if snippet[index] in "(){}<>[]":
                        if complement(snippet[index]) == stack[-1]:
                                stack = stack[:-1]
                        else:
                                stack.append(snippet[index])
        return index

def isPrime(n):
    return not [0 for x in range(2,int(n**.5)+1) if n%x==0] and n>1

def getPrimeFactors(n):
    return [x for x in range(2,n/2) if n%x==0 and isPrime(x)]

def divHardcode(n,m):
    assert n%m == 0
    assert m != 1
    assert n != 1
    binary = bin(m)[3:]
    return (binary.count("1")+len(binary))*"("+getBF(n/m)+")"*binary.count("1")+binary.replace("1","){}{}").replace("0","){}")

def isTriangular(n):
    #Triangles must be between sqrt(2n) and cbrt(2n)
    if n < 0: return isTriangular(-n)
    for x in range(int((2*n)**(1/3.)),int((2*n)**.5)+1):
        if (x**2+x) == 2*n:
            return True
    return False

def getTriangle(n):
    if n < 0: return -getTriangle(-n)
    #Triangles must be between sqrt(2n) and cbrt(2n)
    for x in range(int((2*n)**(1/3.)),int((2*n)**.5)+1):
        if (x**2+x) == 2*n:
            return x
    #If we don't find one we made a mistake
    assert False

def getSimpleBF(n):
    if n in cache:return cache[n]
    if n < 0:
        # There is room for better solutions here
        return "["+getSimpleBF(-n)+"]"
    elif n == 0:
        return ""
    elif n < 6:
        return "()"*n
    #Non-edge cases
    solutions = []
    factors = getPrimeFactors(n)
    if n >= 78 and isTriangular(n):
        solutions.append(
           min([push(getTriangle(n))+"{({}[()])}{}","<"+push(getTriangle(n)+1)+">{({}[()])}{}"],key=len)
        )
    polynomialSolutions = polynomials(n)
    for polynomial in polynomialSolutions:
        solutions.append("<%s>{%s({}[()])%s}{}"%(push(polynomial[0]),"({})"*polynomial[1],"({})"*polynomial[2]))
        #Mod 3 tricks
    if n % 3 == 2:
       solutions.append(("((%s)()){}{}")%getBF(n/3))
    elif n % 3 == 1:
       solutions.append(("((%s)()()){}{}")%getBF(n/3-1))
    #Basic solutions
    if isPrime(n):
        solutions.append(getSimpleBF(n-1) + "()")
    else:
        #TODO multithread
        solutions += map(lambda m:divHardcode(n,m),factors)
    return min(solutions,key=lambda x:len(unpack(x)))

def getBF(n):
    if n in cache: return cache[n]
    result = getSimpleBF(n)
    index = n - 1
    while index > n-(len(result)/2):
        score = getSimpleBF(index)+getSimpleBF(n-index)
        if len(score) < len(result):result = score
        index -= 1
    index = n + 1
    while index < n+(len(result)/2):
        score = getSimpleBF(index)+getSimpleBF(n-index)
        if len(score) < len(result):result = score
        index += 1
    cache[n] = result
    return result

def unpack(string):
    reMatch = re.match("\(*<",string)
    if reMatch:
        location =reMatch.span()
        return string[location[1]:findMatch(string,location[1]-1)] +string[:location[1]-1] + string[findMatch(string,location[1]-1)+1:]
    return string

def push(n):
    return unpack("("+getBF(n)+")")

def kolmo(string):
    code = push(ord(string[-1]))
    stringVector = map(ord,string)
    for x,y in zip(stringVector[-1:0:-1],stringVector[-2::-1]):
        code = "("+code+getBF(y-x)+")"
    code = code.replace("<()>)",")")
    return code

def kolmo(stringVector):
    code = push(stringVector[-1])
    for x,y in zip(stringVector[-1:0:-1],stringVector[-2::-1]):
        code = "("+code+getBF(y-x)+")"
    code = code.replace("<()>)",")")
    return code


if __name__ == "__main__":
    import primes
    sum = 0
    for prime in primes.nums:
        print push(prime)
        sum += len(push(prime))
    print sum

相关功能是push(n)。要调用它,只需在您要表示的整数上调用push。

说明

该程序完成的主要优化是乘法硬编码。乘法硬编码的想法非常简单。您按下一个数字,然后弹出并按下它以创建一个新值。例如,要乘以2,可以使用以下代码((n){}),其中n个代码生成特定的数字。这工作,因为这两个(n){}具有n的值。

对于更大的数字,可以使这个简单的想法变得更加复杂。以5为例,不久前发现乘以5的最佳方法是(((n)){}){}{}。此代码将n的两个副本乘以4,然后将两个相加。使用相同的策略,我根据一个数字的二进制表示形式进行每个乘法。我现在不会详细介绍它的工作原理,但是我会砍掉第一个二进制表示形式,并用0 ){}和1 替换0来表示。){}{}。然后确保将n推入适当的次数并平衡所有括号。(如果您想知道如何完成此操作,可以查看我的代码)。如果您想知道为什么这样做,请在评论中问我。我认为没有人真正阅读过我帖子的所有更新,因此我省略了解释。

当算法尝试找到乘法硬编码时,它将尝试所有数字素数。它忽略了复合因子,因为在某一时刻复合因子总是可以更简洁地表达为其自身的主要因子,尚不清楚这是否成立。

另一个字节保存机制是多项式解查找器。多项式的某些形式很容易用递减循环表示。这些多项式包括但不限于多边形数。此优化将找到适合该格式的多项式,并创建用于编写该多项式的代码。

输出量

粘贴箱


“ n是大于还是小于n + 1”?
Sparr

@Sparr的解释n是大于还是小于n+1
Wheat Wizard

您应该if n % 3 == 2: 将函数的末尾的行缩进一级。
user202729

13

脑筋急转弯64664

在线尝试!

这是我带注释的代码

({}<
 ((((()()()()()){}){}){}()) #41
>)
{
 (({})[()()()()()()])
 ([({}<(())>)](<>)){({}())<>}{}<>{}{}<>(({})){(<{}({}<>)>)}{}({}<>)
 {((< #IF
  {} 
  {({}[()]< #FOR
   ((((()()()()()){}){}){}()) #41
   (({})[()])                 #40
  >)}{}
 >))}{}
 (({}))
 #MOD2
 {(<
  ({}<(())>)({<({}[()]<>)><>(()[{}])<><({}<>)>}{}<({}<>)><>)<>({}<>)
  {((<{}({}< #IF
   {}
   (((()()()()())({})({})({}){})({})({})({}){})  #125
   (({})[()()])                                  #123
   ((((()()()()()){}){}){}())                    #41
   <>
   ((((()()()()()){}){}){})                      #40
   <>
   >)

  >))}{}{}
 >)}{}
 #MOD2 (number 2)
 (({}))
 ({}(())){({}[()]<>)<>(()[{}])<>({}<>)}{}
 (({})<([{}]{})>)
 {
  ({}[()]<<>
    ((((()()()()()){}){}){}) #40
    (({})())                 #41
   <>>)
 }{}
}{}
<>{({}<>)<>}<>((((()()()()()){}){}){})

说明

到目前为止,这仅实现了两个规则:

  • 如果n可被两个返回整除 (n/2){}

  • 如果n不能被二除 n-1()

它还会对小于6的所有数字进行硬编码。


似乎将可除数检查为3会使分数大大降低
仅ASCII的

仅@ASCII我实际上实现了它,它增加了字节数。我正在研究一种实现三分法的更智能版本的方法。
小麦巫师

好的,使用Brain-Flak编写一个生成Brain-Frak数字的程序。真好
Draco18s

10

Perl,59222 59156 58460个字符

  • n() (11322660个字符)
  • (n){}() (64664个字符)
  • ((n)){}{} (63610个字符)
  • ((n)()){}{} (63484个字符)-这是一个新颖的计算
  • (n){({}[()])}{} (60748个字符)
  • n[m] (62800个字符)
  • (n){m({}[l])}{} (58460个字符)-这是一种新颖的计算方法

最后一次计算的公式为n(n/l+1)/2+mn/l。我尝试了其他一些计算,但它们对给定的输出不再有用。该程序实际上会生成所有值,直到9999,然后列出给定的质数及其总长度。

@primes = (<list of the 4-digit prime numbers here>);
@numbers = ();
for ($i = 1; $i < 10000; $i++) {
  $numbers[$i] = "()" x $i; # default calculation
}
for ($i = 2; $i < 10000; $i++) {
  for ($j = 1; $j < 8; $j++) {
    &try($i, "$numbers[$i+$j]\[$numbers[$j]]");
  }
  &try($i + 1, "$numbers[$i]()");
  &try($i * 2, "($numbers[$i]){}");
  &try($i * 3, "(($numbers[$i])){}{}");
  &try($i * 3 + 2, "(($numbers[$i])()){}{}");
  for ($l = 1; $l * $l < $i; $l++) { 
    unless ($i % $l) { 
      for ($j = 0; ($k = (($i + $j + $j) * $i / $l + $i) / 2) < 10000; $j++) { 
        &try($k, "($numbers[$i]){$numbers[$j]({}[$numbers[$l]])}{}");
      } 
    } 
  } 
}
$len = 0;
foreach (@primes) {
  print "($numbers[$_])\n";
  $len += 2 + length $numbers[$_];
}
print "$len\n";
sub try {
  ($n, $s) = @_;
  $numbers[$n] = $s if (length($numbers[$n]) > length $s);
}

您能否提供到输出的链接?
DJMcMayhem

@DJMcMayhem糟糕,我不小心破坏了素数列表,使我的角色数无效。
尼尔

@Linus((X)()){} {}推X,然后加1,推结果,然后弹出X + 1和X。总计3X + 2。我想我在“在线试用”上尝试了其他公式,但我可以仔细检查是否愿意。
尼尔

@Neil我的错...这些看起来不错,但是究竟是什么破坏了素数呢?
Linus

1
@Neil当我添加时得到58158 &try($i * $i, "$numbers[$i]{({})({}[()])}{}");,当我还添加&try((3 * $i * $i - $i) / 2, "$numbers[$i]{({})({}[()])({})}{}");(平方/五边形数字)时下降到58032- 从这里开始
纯ASCII码

5

Python,59136 58676个字符

Brainflak数字打高尔夫球功能:

m=11111
R=range(0,m)
R[1]="()"
R[2]="()()"
l=2
def a(v,r):
 if v>0 and v<m:
  if isinstance(R[v],int) or len(r)<len(R[v]):
   R[v]=r
   if v<R[0]:
    R[0]=v
def s(v,k):
 S=0
 while v>0:
  S+=v
  v-=k
 return S
p=lambda r:"("+r+")"
w=lambda r:"{({}["+r+"])}{}"
def q(r,v):
 for i in range(1,v):
  r="("+r+")"
 for i in range(1,v):
  r+="{}"
 return r
def e(r,v,k):
 for i in range(0,k):
  r=q(r,v)
 return r
while l<m:
 R[0]=l+1
 a(l*2,q(R[l],2)) 
 a(l*3,q(R[l],3))
 a(l*5,q(R[l],5))
 a(l*7,q(R[l],7))
 for i in range(1,l):
  a(l+i,R[l]+R[i])
  a(l-i,R[l]+"["+R[i]+"]")
  if l%i==0:
   t=s(l-i,i)
   a(s(l,i),p(R[l])+w(R[i]))
   a(l+2*t,p(R[l])+q(w(R[i]),2))
   a(l+4*t,p(R[l])+e(w(R[i]),2,2))
   a(l+8*t,p(R[l])+e(w(R[i]),2,3))
   a(l+16*t,p(R[l])+e(w(R[i]),2,4))
   a(l+32*t,p(R[l])+e(w(R[i]),2,5))
   a(l+64*t,p(R[l])+e(w(R[i]),2,6))
   a(l+128*t,p(R[l])+e(w(R[i]),2,7))
   a(l+3*t,p(R[l])+q(w(R[i]),3))
   a(l+9*t,p(R[l])+e(w(R[i]),3,2))
   a(l+27*t,p(R[l])+e(w(R[i]),3,3))
   a(l+5*t,p(R[l])+q(w(R[i]),5))
   a(l+6*t,p(R[l])+q(q(w(R[i]),3),2))
   a(l+10*t,p(R[l])+q(q(w(R[i]),5),2))
   a(l+15*t,p(R[l])+q(q(w(R[i]),5),3))
   a(l+12*t,p(R[l])+q(q(q(w(R[i]),3),2),2))
   a(l+18*t,p(R[l])+q(q(q(w(R[i]),3),3),2))
   a(l+20*t,p(R[l])+q(q(q(w(R[i]),5),2),2))
   a(l+24*t,p(R[l])+q(q(q(q(w(R[i]),3),2),2),2))
   a(l+36*t,p(R[l])+q(q(q(q(w(R[i]),3),3),2),2))
   a(l+40*t,p(R[l])+q(q(q(q(w(R[i]),5),2),2),2))
 l=R[0]
f=lambda v:p(R[v])

质数迭代:

def isPrime(v):
 i=2
 while i*i<=v:
  if v%i==0:
   return False
  i+=1
 return True

for i in range(1000,10000):
 if isPrime(i):
  print f(i)

输出:

Pastebin

说明:

我们预填充了大脑-flak表示形式的列表R,该列表对大于必要范围[1,m -1]的单个整数求值,以定义函数f。通过采用最低的未使用表示形式(由l索引)并从中形成许多新表示形式(仅保持最短表示形式)来形成表示形式。最低的未使用表示假定已为所有数字1到1分配了一个表示,并且这些表示已用于生成新的数字。如果小于l的值表示较短,我们必须返回并重现从该点开始的数字。函数f 产生一个通过添加括号将数字保存到堆栈的程序。

我刚开始时并不了解Brainflak,并且非常感谢Eamon Olive指出三角形数字公式的答案。通常,我已经概括了总和,并且不遗余力地检查总和和差异。加总和的许多倍有很大的影响。

对于那些在乎的人,这是我用来查看哪些公式值得的草稿代码

表示公式:

  1. 小素数相乘:
    (X){}
    ((X)){}{}
    ((((X)))){}{}{}{}
    ((((((X)))))){}{}{}{}{}{}
  2. 除了X + Y ^
    XY
  3. X - Y
    X[Y]
  4. 求和并包括X增量ÿ
    (X){({}[Y])}{}
  5. X乘以Y的总和的总和的倍数,再加上X
    (X)({({}[Y])}{}){}
    (X)(({({}[Y])}{})){}{}
    (X)(({({}[Y])}{}){}){}
    等等...

我以为5 *并没有帮助,但是现在我看到它在答案中节省了10个字符。我以为我已经尝试过这些总结,但是我会仔细检查!
尼尔

增量加倍的总和可以为我节省另外46个字节,即使如此,我也必须冲洗并重复3次才能全部捕获。
尼尔

原来,如果我使用减法,那么我将不再使用5 *。
尼尔

4

Lua 5.3、57522

问题刚发布时,我实际上就开始对此进行研究,但是直到Brain-Flak周年纪念日才忘记了。

-- 64 gives all results through 10000 (should run in about 1 second)
-- 78 gives all results through 100000 (should run in about 20 seconds)
-- 90 gives all results through 1000000 (should run in about 200 seconds)
-- Note: Timings may not be accurate, as the are not updated every time new cases are added.

local k_max_len = 64
local k_limit = 10000

local pre = os.clock()

local function compute_multiplier_helper(prefix, suffix, m)
  if m == 2 then
    prefix[#prefix + 1] = "("
    suffix[#suffix + 1] = "){}"
  elseif m % 2 == 0 then
    prefix[#prefix + 1] = "("
    compute_multiplier_helper(prefix, suffix, m // 2)
    suffix[#suffix + 1] = "){}"
  else
    suffix[#suffix + 1] = ")"
    compute_multiplier_helper(prefix, suffix, m - 1)
    prefix[#prefix + 1] = "("
    suffix[#suffix + 1] = "{}"
  end
end

local function compute_multiplier(m)
  local prefix = {}
  local suffix = {}
  compute_multiplier_helper(prefix, suffix, m)
  return table.concat(prefix), table.concat(suffix)
end

local multipliers = {}
for m = 2, k_limit do
  -- Including all factors, not just primes.
  -- This did improve a few numbers, although none in the ppcg test set.
  local prefix, suffix = compute_multiplier(m)
  local mult = {prefix = prefix, suffix = suffix, m = m, cost = #prefix + #suffix}
  table.insert(multipliers, mult)
end
table.sort(multipliers, function(a, b) return a.cost < b.cost end)

local poly_multipliers = {}
poly_multipliers[1] = {m = 1, s = "({})", l = 4}
for m = 2, k_limit do
  local prefix, suffix = compute_multiplier(m)
  local s = prefix .. "({})" .. suffix
  assert(#s <= 4 * m)
  poly_multipliers[m] = {m = m, s = s, l = #s}
end
poly_multipliers[k_limit + 1] = {m = 0, s = "", l = 0}

table.sort(poly_multipliers, function(a, b) return a.l < b.l end)

local pcache = {}
local plen_cache = {}

local function register_push(prefix, suffix, value, pvalue)
  if value > 1500000 or value < -1500000 then return end
  local old_res = pcache[value]
  if old_res == nil then
    local res = {prefix = prefix, suffix = suffix, value = value, pvalue = pvalue}
    pcache[value] = res
    local length = #prefix + #suffix
    local lcache = plen_cache[length]
    if lcache == nil then
      lcache = {}
      plen_cache[length] = lcache
    end
    lcache[#lcache + 1] = res
  end
end

local function get_pushes(length)
  return ipairs(plen_cache[length] or {})
end

register_push("", "()", 1, 0)
register_push("", "<()>", 0, 0)

local function triangle(n)
  return (n * (n + 1)) // 2
end

local function process(length)
  -- basic
  for _, res in get_pushes(length - 2) do
    register_push(res.prefix, res.suffix .. "()", res.value + 1, res.pvalue)
    register_push(res.prefix, "[" .. res.suffix .. "]", -res.value, res.pvalue)
  end

  -- multiplication by constant (precomputed)
  for _, mult in ipairs(multipliers) do
    local cost = mult.cost
    if length - cost >= 4 then
      local m, prefix, suffix = mult.m, mult.prefix, mult.suffix
      for _, pus in get_pushes(length - cost) do
        local name = prefix .. pus.suffix .. suffix
        register_push(pus.prefix, name, pus.value * m, pus.pvalue)
      end
    else
      break
    end
  end

  -- residue 2 mod3 trick (Neil)
  -- ((n)()){}{}
  --  (n)        -- push n
  -- (   ())     -- push n + 1
  --        {}{} -- (n + 1) + (n + 1) + n
  if length - 10 >= 2 then
    for _, res in get_pushes(length - 10) do
      local name = "((" .. res.suffix .. ")()){}{}"
      register_push(res.prefix, name, 3 * res.value + 2, res.pvalue)
    end
  end

  -- residue 1 mod3 trick (Wheat Wizard)
  -- ((n)()()){}{}
  --  (n)          -- push n
  -- (   ()())     -- push n + 2
  --          {}{} -- (n + 2) + (n + 2) + n
  -- not useful, but fast...
  if length - 12 >= 2 then
    for _, res in get_pushes(length - 12) do
      local name = "((" .. res.suffix .. ")()()){}{}"
      register_push(res.prefix, name, 3 * res.value + 4, res.pvalue)
    end
  end

  -- residue 2 mod5 trick (tehtmi)
  -- (((n)){}()){}{}
  --   (n)           -- push n
  --  (   )          -- push n
  -- (     {}())     -- push 2n + 1
  --            {}{} -- (2n + 1) + (2n + 1) + n
  -- [[
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      local name = "(((" .. res.suffix .. ")){}()){}{}"
      register_push(res.prefix, name, 5 * res.value + 2, res.pvalue)
    end
  end
  -- ]]

  -- residue 4 mod5 trick (tehtmi)
  -- (((n)()){}){}{}
  --   (n)           -- push n
  --  (   ())        -- push n + 1
  -- (       {})     -- push 2n + 2
  --            {}{} -- (2n + 2) + (2n + 2) + n
  -- [[
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      local name = "(((" .. res.suffix .. ")()){}){}{}"
      register_push(res.prefix, name, 5 * res.value + 4, res.pvalue)
    end
  end
  -- ]]

  -- residue 6 mod7 trick (tehtmi)
  -- ((((n)())){}{}){}{}
  --    (n)              -- push n
  --   (   ())           -- push n + 1
  --  (       )          -- push n + 1
  -- (         {}{})     -- push 3n + 3
  --                {}{} -- (3n + 3) + (3n + 3) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. ")())){}{}){}{}"
      register_push(res.prefix, name, 7 * res.value + 6, res.pvalue)
    end
  end
  --]]

  -- residue 4 mod7 trick (tehtmi)
  -- ((((n))()){}{}){}{}
  --    (n)              -- push n
  --   (   )             -- push n
  --  (     ())          -- push n + 1
  -- (         {}{})     -- push 3n + 2
  --                {}{} -- (3n + 2) + (3n + 2) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. "))()){}{}){}{}"
      register_push(res.prefix, name, 7 * res.value + 4, res.pvalue)
    end
  end
  --]]

  -- residue 2 mod7 trick (tehtmi)
  -- ((((n))){}{}()){}{}
  --    (n)              -- push n
  --   (   )             -- push n
  --  (     )            -- push n
  -- (       {}{}())     -- push 3n + 1
  --                {}{} -- (3n + 1) + (3n + 1) + n
  -- [[
  if length - 18 >= 2 then
    for _, res in get_pushes(length - 18) do
      local name = "((((" .. res.suffix .. "))){}{}()){}{}"
      register_push(res.prefix, name, 7 * res.value + 2, res.pvalue)
    end
  end
  --]]

  -- triangle numbers (?)
  --(n){({}[()])}{}
  --(n)              -- push n
  --   {        }    -- sum and repeat
  --    (      )     -- push
  --     {}[()]      -- top - 1
  --             {}  -- pop 0
  if length - 14 >= 2 then
    for _, res in get_pushes(length - 14) do
      if res.value > 0 then
        local code = "{({}[()])}{}"
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, triangle(res.value - 1), res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, triangle(res.value), res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, triangle(res.value) + res.pvalue, 0)
      end
    end
  end

  -- negative triangle numbers (tehtmi)
  --(n){({}())}{}
  --(n)            -- push n
  --   {      }    -- sum and repeat
  --    (    )     -- push
  --     {}()      -- top + 1
  --           {}  -- pop 0
  if length - 12 >= 2 then
    for _, res in get_pushes(length - 12) do
      if res.value < 0 then
        local code = "{({}())}{}"
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, -triangle(-res.value - 1), res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, -triangle(-res.value), res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, -triangle(-res.value) + res.pvalue, 0)
      end
    end
  end

  -- cubic (tehtmi)
  -- (n){(({}[()])){({}[()])}{}}{}
  -- (n^3-3*n^2+8*n-6)/6
  -- (-6 + n*(8 + n*(-3 + n)))/6
  --[[ superceded by negative cubic because 
       it is the same cost of -ncubic(-n)
  if length - 28 >= 2 then
    for _, res in get_pushes(length - 28) do
      if res.value > 0 then
        local code = "{(({}[()])){({}[()])}{}}{}"
        local v = res.value + 1
        v = (-6 + v*(8 + v*(-3 + v)))//6
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, v - res.value, res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, v, res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, v + res.pvalue, 0)
      end
    end
  end
  --]]

  -- negative cubic (tehtmi)
  -- (n){(({}())){({}())}{}}{}
  -- (n^3-3*n^2+8*n-6)/6
  -- (-6 + n*(8 + n*(-3 + n)))/6
  -- [[
  if length - 24 >= 2 then
    for _, res in get_pushes(length - 24) do
      if res.value < 0 then
        local code = "{(({}())){({}())}{}}{}"
        local v = -res.value + 1
        v = (-6 + v*(8 + v*(-3 + v)))//6
        v = -v
        register_push(res.prefix .. "(" .. res.suffix .. ")", code, v - res.value, res.pvalue + res.value)
        register_push(res.prefix, "(" .. res.suffix .. ")" .. code, v, res.pvalue)
        register_push("", res.prefix .. "(" .. res.suffix .. ")" .. code, v + res.pvalue, 0)
      end
    end
  end
  --]]

  -- polynomial (Wheat Wizard, modified by tehtmi)
  -- <(n)>{A({}[()])B}{} where A, B are ({})({})({})... repeated a, b times
  -- <(n)>                -- push n (without adding)
  --      {          }    -- repeat until top is zero
  --       A              -- top * a
  --        ({}[()])      -- top = top - 1; += top - 1
  --                B     -- (top - 1) * b
  --                  {}  -- pop 0
  -- triangular numbers are with a = b = 0
  -- from B and base:
  -- (n - 1) * (B + 1) * (n - 2) * (B + 1) * ...
  -- (B + 1) * (1 + ... + n - 1)
  -- (B + 1) * n * (n - 1) / 2
  -- from A:
  -- n * A + (n - 1) * A + ...
  -- A * (1 + ... n)
  -- A * (n + 1) * n / 2
  -- total: (B + 1) * n * (n - 1) / 2 + A * (n + 1) * n / 2
  --        [(A + B + 1) * n^2 + (A - B - 1) * n] / 2
  -- S := 4 * (A + B)
  -- [[
  if length - 18 >= 2 then
    for S = 4, length - 14, 4 do
      for _, res in get_pushes(length - 14 - S) do
        if res.value > 0 then
          for _, A in ipairs(poly_multipliers) do
            if A.l > S then
              break
            end
            for _, B in ipairs(poly_multipliers) do
              if A.l + B.l < S then
                -- continue
              elseif A.l + B.l > S then
                break
              else
                local a = A.m
                local b = B.m

                local logic = "{" .. A.s .. "({}[()])" .. B.s .. "}{}"
                local v = res.value
                v = ((a + b + 1) * v * v + (a - b - 1) * v) // 2
                register_push(res.prefix .. "(" .. res.suffix .. ")", logic, v, res.pvalue + res.value)
                register_push(res.prefix, "(" .. res.suffix .. ")" .. logic, v + res.value, res.pvalue)
                register_push("", res.prefix .. "(" .. res.suffix .. ")" .. logic, v + res.value + res.pvalue, 0)
              end
            end
          end
        end
      end
    end
  end
  --]]

  -- negative polynomial (tehtmi)
  -- <(n)>{A({}())B}{}
  -- [[
  if length - 16 >= 2 then
    for S = 4, length - 12, 4 do
      for _, res in get_pushes(length - 12 - S) do
        if res.value < 0 then
          for _, A in ipairs(poly_multipliers) do
            if A.l > S then
              break
            end
            for _, B in ipairs(poly_multipliers) do
              if A.l + B.l < S then
                -- continue
              elseif A.l + B.l > S then
                break
              else
                local a = A.m
                local b = B.m

                local logic = "{" .. A.s .. "({}())" .. B.s .. "}{}"
                local v = -res.value
                v = ((a + b + 1) * v * v + (a - b - 1) * v) // -2

                register_push(res.prefix .. "(" .. res.suffix .. ")", logic, v, res.pvalue + res.value)
                register_push(res.prefix, "(" .. res.suffix .. ")" .. logic, v + res.value, res.pvalue)
                register_push("", res.prefix .. "(" .. res.suffix .. ")" .. logic, v + res.value + res.pvalue, 0)
              end
            end
          end
        end
      end
    end
  end
  --]]

  -- addition
  -- [[
  if length >= 4 then
    for part1 = 4, length // 2, 2 do
      for _, res1 in get_pushes(part1) do
        for _, res2 in get_pushes(length - part1) do
          register_push(res2.prefix .. res1.prefix, res1.suffix .. res2.suffix, res1.value + res2.value, res1.pvalue + res2.pvalue)
        end
      end
    end
  end
  --]]

  -- pseudo-exponentiation (tehtmi)
  -- (n)<>(m){({}[()])<>(({}){})<>}{}<>{}
  -- (n)<>(m)                             -- push n and m on opposite stacks
  --         {                    }       -- sum and repeat
  --          ({}[()])                    -- top(m) - 1
  --                  <>(({}){})<>        -- n = 2*n; += n
  --                               {}     -- pop 0
  --                                 <>   -- swap to result
  --                                   {} -- pop and add n
  -- [[
  if length - 34 >= 4 then
    local subl = length - 34
    for part1 = 2, subl - 2, 2 do
      for _, res2 in get_pushes(part1) do
        local b = res2.value
        if b > 0 and b < 55 then -- overflow could be a problem, so bound...
          for _, res1 in get_pushes(subl - part1) do
            -- 2n + 4n + 8n + ... + (2^m)*n + 2^m * n
            -- n( 2 + 4 + 8 + .. 2^m + 2^m)
            -- n( 3 * 2^m - 2 )
            local a = res1.value
            local body = "(" .. res1.suffix .. ")<>" .. res2.prefix .. "(" .. res2.suffix .. "){({}[()])<>(({}){})<>}{}<>{}"
            local v = a * (3 * (1 << b) - 2) + b * (b - 1) // 2 + a + b + res2.pvalue
            register_push(res1.prefix, body, v, res1.pvalue)
            register_push("", res1.prefix .. body, v + res1.pvalue, 0)
          end
        end
      end
    end
  end
  --]]
end

--print(os.clock(), "seconds (startup)")

local start = os.clock()
for i = 2, k_max_len - 2, 2 do
  --print(i)
  process(i)
end

plen_cache = nil

local final = {}
for i = 1, k_limit do
  if pcache[i] ~= nil then
    final[i] = pcache[i].prefix .. "(" .. pcache[i].suffix .. ")"
  end
end

pcache = nil

-- hard coded to 10000 for ppcg test
local sieve = {}
for i = 1, 10000 do sieve[i] = true end
for i = 2, 10000 do
  for j = i * i, 10000, i do
    sieve[j] = false
  end
end

--print(os.clock() - start, "seconds (calculation)")

--local bf = require("execute2")

local count = 0
local sum = 0
local sum2 = 0
local maxlen = 0
local pcount = 0
for i = 1, k_limit do
  local res = final[i]
  final[i] = nil
  --print(i, #res, res)
  --local ev = res and bf.eval1(bf.compile(res)) or -1; assert( res == nil or ev == i, string.format("Failed %d %s %d", i, res or "", ev))
  if sieve[i] and i > 1000 then
    sum = #res + sum
    pcount = pcount + 1
  end
  if res then
    sum2 = #res + sum2
    maxlen = math.max(maxlen, #res)
    count = count + 1
  end
end
print("sum", sum)
--print("coverage", count / k_limit, "missing", k_limit - count)
--print("sum2", sum2)
--print("maxlen", maxlen)
assert(pcount == 1061)

与其他答案的想法类似,在后者中,已知有用的函数用于根据较简单数字的良好表示来构建较大数字。

一个区别是,我不是在解决具有较小数字的子问题,而是在解决具有较短表示形式的数字的子问题。我认为这使得利用负数以及处理以较大数字表示较小数字的情况更加优雅。

而且,尝试查找可以以一定大小表示的所有数字,而不是尝试尽可能短地表示特定数字,实际上简化了某些计算。与其反向处理公式以查看是否可以将其应用于数字,不如将公式向前处理并应用于每个数字。

另一个区别是,已知解决方案存储在两部分中-一个(可选)“前缀”和一个“后缀”(更像是一个后缀)。计算给定数字时,前缀的评估预计会被忽略-前缀仅包含用于设置要运行的后缀的代码(通常通过将一个或多个内容压入堆栈)。因此,给定前缀和后缀,可以使用将对应的数字压入堆栈prefix(suffix)

此拆分基本上解决了与unpackWheat Wizard答案中的功能相同的问题。而不是<...>仅包装代码以稍后撤消,而是将这些代码简单地添加到前缀中。

在某些情况下,确实会对前缀进行评估(主要是针对伪幂运算),因此也会存储其估值。但是,这实际上并不会引起什么大问题,因为生成器并未尝试构造特定的数字。从理论上讲,这似乎意味着可能存在两段相同长度的代码,并生成相同数量的代码,由于具有不同的前缀值,因此在缓存中不会是多余的。不过,我并没有为此而烦恼,因为这似乎无关紧要(至少在此领域中如此)。

我想通过增加更多的情况来减少字节数是很容易的,但是目前我已经受够了。

我已经达到了1000000,但最多只能进行100000次健全性检查。

给定素数的输出粘贴框。


做什么k_limitk_max_len做什么?我不确定我是否理解标题。
小麦巫师

1
我不是在尝试计算特定数字,而是在计算所有有用的程序(即,给出比其他找到的程序短的数字不要太大),直到一定长度- k_max_len。可以很容易地检查它是否在处理每个长度后找到了您要求的所有数字,但是对我来说能够在测试期间限制最大长度非常有用,这样程序可以运行得更快。(处理较大的长度可能会非常慢。)k_limit基本上是输入参数-它将输出直至此数目的程序-假定k_max_len足够大以找到它们。
tehtmi '17

4

红宝石,60246字节

$brain_flak = Hash.new{|h, k|
    a = []
    a.push "()"*k
    if k > 1
        if k > 10
            # Triangle Numbers:
            n = (Math.sqrt(1+8*k).to_i-1)/2
            if (n*n+n)/2 == k
                a.push "("+h[n]+"){({}[()])}{}" 
                a.push  h[n+n]+")({({}[()])}{}"
            end
        end
        (k**0.51).to_i.downto(2){|i|
            # multiplication:
            if k%i==0
                a.push "("*(i-1) + h[k/i] + ")"*(i-1)+"{}"*(i-1)

            end
        }
        (k/2).downto(1){|i|
            # Addition
            a.push h[k-i] + h[i]
        }
    end

    h[k] = a.min_by{|x|x.length}
}
$brain_flak[0] = "<><>"

def get_code_for (i)
  "(#{$brain_flak[i]})"
end

我使用哈希。我找到给定编号的最佳高尔夫球,然后使用较小的高尔夫球找到较大的高尔夫球。

递归哈希非常有趣!


2

Python,64014个字符

在挑战之前,我对brankflak一无所知,只是在Tryitonline上稍作改动,所以我可能错过了一些明显的捷径。这是一个非常无聊的解决方案,只需将输入拆分为x=x/2+x%2x=x/3+x%3,以较短者为准。

k=lambda x:"(("+o(x/3)+")){}{}"+(x%3)*"()"if x>3else"()"*x
m=lambda x:"("+o(x/2)+"){}"+(x%2)*"()"if x>6else"()"*x
o=lambda x:min(k(x),m(x),key=len)
b=lambda x:"("+o(x)+")"

这样称呼它: b(42)

在pastebin上输出


1

Lua,64664字节

程序打印程序和203rd prime的程序的总长度(您可以更改一行以更改要打印的行,或取消注释以打印所有程序的行)

现在唯一的优化是x = 2 * n + 1

希望我将有时间添加更多优化以降低分数。

local primeS = [[<INSERT PRIMES HERE>]]

local primes = {}

for num in primeS:gmatch("%d+") do
    table.insert(primes, num+0)
end

local progs = {}
progs[0] = ""
progs[1] = "()"
progs[2] = "()()"

local function half(n)
    if progs[n] then return progs[n] end
    local p = ""
    local div = math.floor(n/2)
    local rem = n%2 == 1 and "()" or ""
    return "("..progs[div].."){}"..rem
end

for i = 3, 10000 do

    local bin = half(i)

    progs[i] = progs[i-1] .. "()"

    if #bin < #progs[i] then
        progs[i] = bin
    end

    if i % 1000 == 0 then
        print(i)
    end

end

local n = 203 -- This is the program it outputs
print(n..", ("..progs[203]..")")

local len = 0
for i,v in ipairs(primes) do
    len = len + #progs[v] + 2
    --print(v.." ("..progs[v]..")\n")
end
print("Total len: "..len)
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.