在这本有关图论中的派系问题的维基百科文章中,它一开始就指出在图G中找到大小为K的派系的问题是NP完全的:
还对群体进行了计算机科学研究:发现图形中是否存在给定大小的群体(群体问题)是NP完全的,但是尽管有这种硬度结果,但仍研究了许多用于寻找群体的算法。
但是在另一篇有关CS中的集团问题的 Wikipedia文章中, 它说它正在解决固定大小的问题k是P中的问题,它可以在多项式时间内强行使用。
蛮力算法来检验图G是否包含k顶点集团,并找到它包含的任何此类集团,就是检查每个子图至少具有k个顶点,并检查其是否形成集团。该算法花费时间O(n ^ kk ^ 2):要检查O(n ^ k)个子图,每个子图都有O(k ^ 2)个边,需要检查其在G中的存在。因此,只要k为固定常数,就可以在多项式时间内解决该问题。但是,如果k是问题输入的一部分,则时间是指数的。
我在这里缺少什么吗?问题的措词可能有所不同?最后一句话是什么意思:“但是,当k是问题输入的一部分时,时间是指数的。” 当k是问题输入的一部分时,为什么会有差异?
我的想法是要在图G中找到大小为k的集团,就是我们首先从G中选择节点的大小为k的子集,然后测试它们是否都与其他k个节点相关,这可以以常数完成时间。重复此步骤,直到我们得到大小为k的小集团。我们可以从G中选择的k个节点的集合数为n!/ k!*(nk)!。