我目前正在研究有向图中的最短路径。有许多有效的算法可用于查找网络中的最短路径,例如dijkstra算法或bellman-ford算法。但是,如果图形是动态的,该怎么办?我说动态是指我们可以在程序执行期间插入或删除顶点。我正在尝试找到一种有效的算法,用于在插入边e之后更新从顶点到每个其他顶点u的最短路径,而无需在新图中再次运行最短路径算法。我怎样才能做到这一点?提前致谢。
- 注意:更改可以在算法的第一次迭代后完成
- 注[2]:两个节点中给出,源和Ť目标。我需要找到这些节点之间的最短路径。当图形更新时,我只需要更新π (s ,t ),这是s和t之间的最短路径。
- 注意[3]:我只对边缘插入盒感兴趣。
正式定义:给定一个图。定义一个更新操作作为1)的边缘的插入ë到ë或2)的边缘的氨基酸缺失ë从ë。目的是有效地找到更新操作后所有对最短路径的成本。有效地,我们的意思至少比每次更新操作后执行All-Pairs-Shortest-Path算法(例如Bellman-Ford算法)更好。
编辑:下面是问题的简化版本:
给出了一个加权图,该图由单向边以及两个关键顶点s和t组成。还给出了候选双向边缘的集合C。我必须建立一个边缘(Û ,v )∈ Ç以最小化从距离小号到吨。