Answers:
电路深度下限(等效地,式尺寸下限)可能是最自然的方法:的super 深度下界中的问题会分离从和Karchmer-Wigderson通信复杂度技术可以为此自然而然。
[1]证明了mincost-flow实例的下限,其实例的位大小与图的大小相比足够大(但仍是线性的),并且进一步证明了如果对于足够小的输入,可以显示相同的下限比特大小意味着(因此P ≠ L)。从总体上讲,这与Noam的回答相同,因为它是关于证明电路深度的下界(=公式大小的下界),但似乎是与Karchmer-Wigderson游戏截然不同的方向。
更详细地,[1]显示以下内容。使用与本文相同的表示法,让表示最小成本流语言。我们可以将n顶点图上的mincost-flow语言(表示为L (n ),看作是对于k (n )= Θ (n 2)的Z k (n )的子集,其中整数由位串编码。令B (a ,n )表示Z k (n )中所有向量的集合其中每个整数坐标的位大小最多为。给定一个函数f (x 1,… ,x k)(我们将在后面指定哪种函数),如果L (n )∩中的点points ,则说f在B (a ,n )内将L (n )分隔开乙(一,ñ )正是那些→ X ∈ 乙(一,使得 f (→ x)= 1。
命题[1,命题7.3]如果在B (a ,n )中被det (M (→ x))分隔,其中是大小的矩阵,其项是(线性组合,使得,然后。
这里,位绑定的和大小绑定的关系至关重要。在同一篇论文中,他展示了:
定理[1,定理7.4]对于所有足够大的位界,前述命题的假设成立。
上述定理的证明使用了一些沉重的铁锤作为黑匣子,但除此之外还是基本的(请注意:“基本” “ 简单 ”)。也就是说,它使用实半代数变体的连接分量数上的Milnor-Thom边界(Ben-Or使用相同的边界来证明真实计算树模型中元素的唯一性/排序的下界),柯林斯分解(用来证明对),一般位置参数和其他一些想法的有效量词消除。但是,所有这些技术仅取决于所涉及的多项式的阶数,因此不能像上述命题一样用于证明(实际上是[1,Prop。7.5]构造一个多项式 of the same degree as such that the above proposition fails with in place of ). Analyzing this situation and looking for properties that went beyond degree was one of the inspirations for GCT.
[1] K. Mulmuley. Lower Bounds in a Parallel Model without Bit Operations. SIAM J. Comput., 28(4), 1460–1509, 1999
It made my day when my friend James told me that this thread from long ago was rekindled. Thank you for that.
Also, I had an urge to share some interesting references that are relevant to L vs Log(DCFL) vs Log(CFL). Have a great day!
http://link.springer.com/chapter/10.1007%2F978-3-642-14031-0_35#page-1
http://link.springer.com/chapter/10.1007/3-540-10003-2_89?no-access=true
http://link.springer.com/chapter/10.1007%2F978-3-642-00982-2_42#page-1
this new paper was just highlighted by Luca Aceto in his blog as an EATCS best student paper at ICALP 2014 & has a novel way of separating NL/P:
Hardness Results for Intersection Non-Emptiness Wehar
We carefully reexamine a construction of Karakostas, Lipton, and Viglas (2003) to show that the intersection non-emptiness problem for DFA's (deterministic finite automata) characterizes the complexity class NL. In particular, if restricted to a binary work tape alphabet, then there exist constants and such that for every intersection non-emptiness for DFA's is solvable in space, but is not solvable in space. We optimize the construction to show for an arbitrary number of DFA's intersection non-emptiness is not solvable in space. Furthermore, if there exists a function such that for every intersection non-emptiness for DFA's is solvable in time, then P≠NL. If there does not exist a constant such that for every intersection non-emptiness for DFA's is solvable in time, then P does not contain any space complexity class larger than NL.