我对我称之为d维命中集问题的参数化复杂性感兴趣:给定一个范围空间(即一个集合系统/超图),S =(X,R)的VC维最大为d,而a正整数k,X是否包含大小为k的子集,该子集到达R中的每个范围?问题的参数化版本由k参数化。
对于d的什么值是d维命中集问题
- 在FPT中?
- 在W [1]中?
- W [1]-难吗?
- W [2]-难吗?
我所知道的可以总结如下:
一维击中集位于P中,因此位于FPT中。如果S的维数为1,则不难证明存在大小为2的打击集,或者S的入射矩阵完全平衡。无论哪种情况,我们都可以找到多项式时间中的最小命中集。
4维命中集是W [1] -hard。Dom,Fellows和Rosamond [PDF]证明了W [1]-硬度适用于用平行轴刺入R ^ 2中的平行轴矩形的问题。可以将其表示为VC维4的范围空间中的击中集。
如果没有对d的限制,则我们有标准的命中集问题,即W [2]-完全和NP-完全。
Langerman和Morin [引文链接]给出了限制尺寸的Set Cover的FPT算法,尽管它们的有界尺寸模型与有界VC维度定义的模型不同。他们的模型似乎不包括例如用点击中半空间的问题,尽管他们模型的原型问题等同于用点击中超平面。