我想我昨天证明了。因此,这里是证明的草图。首先,证明以下引理。
引理。令一个偏序,G (P) -它的线性扩展图和v 1,v 2 - G (P)的两个相邻顶点。然后| d È 克(v 1)- d È 克(v 2)| ≤ 2。PG(P)v1,v2G(P)|deg(v1)−deg(v2)|≤2
证明的草图。
同时,是P的线性扩展,因此其中一个,例如v 1,可以通过相邻元素的一个换位(相邻换位)转换为v 2。容易看出(例如,从上图中考虑d和e),任何线性扩展L = x 1 x 2 … x n的元素x i最多可以改变两个元素上无与伦比的相邻元素的数量:v1,v2Pv1v2dexiL=x1x2…xn
- 如果可以在所有被调换则至少有一个它的邻居,说X 我+ 1,是无与伦比的它(X 我 ∥ X 我+ 1,如果可比然后X 我 ⊥ X 我+ 1)。注意:转置之前,我们有L 1 = … x i − 1 x i x i + 1 x i + 2 …以及紧接着-L 2 = …xixi+1xi∥xi+1xi⊥xi+1L1=…xi−1xixi+1xi+2…。L2=…xi−1xi+1xixi+2…
- 让我们考虑如何incomparabilities的数量(线性扩展为顶点的程度中)大号可能会改变。我们首先考虑对x i x i + 2。对于X 我- 1 X 我+ 1相同的结论如下通过对称性。G(P)Lxixi+2xi−1xi+1
如果,那么d È 克(大号)不改变。如果X 我+ 1 ⊥ (∥ )X 我+ 2 ∧ X 我 ∥ (⊥ )X 我+ 2,那么d È 克xi+1∥(⊥)xi+2∧xi∥(⊥)xi+2deg(L)xi+1⊥(∥)xi+2∧xi∥(⊥)xi+2增加(减少)一倍。deg(L)
Theorem. Let G(P) - a linear extension graph. If G(P) contains vertices v1,v2 with deg(v1)=k,deg(v2)=k+2, then there is v3∈G(P) such that deg(v3)=k+1.
The sketch of the proof.
Suppose v1,v2,deg(v1)=k,deg(v2)=k+2 are adjacent in G(P), otherwise any vertex with degree k in G(P) is adjacent with some vertex if such exists with degree k+1.
Let us consider the case where we have L1,L2 from the previous lemma such that
xi+1⊥xi+2∧xi∥xi+2,
and
xi−1⊥xi∧xi−1∥xi+1,
Thus deg(L2)=deg(L1)+2.
Let us now start transpose xi+1 in the direction of x1. It is easy to see that eventually we could stop at the position where
xj⊥xi+1∧xi+1∥xj+1,
for some
j<i−1.
The sketch of the proof is completed.