不知道NEXP是否包含在P / poly中。确实证明NEXP不在P / poly中将在去随机化方面有一些应用。
可以证明P / poly中不包含C的最小统一类C是什么?
像在NEXP vs P / poly的情况下那样,证明联合NEXP不包含在P / poly中会带来其他复杂性理论后果吗?
注意:我知道 小号P2
不知道NEXP是否包含在P / poly中。确实证明NEXP不在P / poly中将在去随机化方面有一些应用。
可以证明P / poly中不包含C的最小统一类C是什么?
像在NEXP vs P / poly的情况下那样,证明联合NEXP不包含在P / poly中会带来其他复杂性理论后果吗?
注意:我知道 小号P2
Answers:
我说 F:ñ→ñ
首先,直接对角线化显示 ΣP4⊈小号一世žË(ñķ)
如果 F
证明草图:适用于 ñ
一项著名的改进指出 小号2P⊈小号一世žË(ñķ)
如果 F
证明草图:如果没有,则特别是 ñP⊆小号2P⊆P/pØ升ÿ
遗忘的类甚至更好。考虑到Apoorva Bhagwat提出的反对意见,ñ大号一世ñ=ñŤ一世中号Ë(ñ)
如果 F
证明草图:如果 ñ大号一世ñ⊆P/pØ升ÿ
也有涉及MA的结果。经常提到的结果是中号一个--ËXP⊈P/pØ升ÿ
如果 F
证明草图:由Santhanam的引理11(这是标准事实的清晰版本,即 P小号P一个CË=一世P
对于合适的单调多项式 p
If we prefer a result with a non-promise version of MA, Miltersen, Vinodchandran, and Watanabe proved MA-TIME(f(n))∩coMA-TIME(f(n))⊈P/poly
OMA-TIME(eα)∩coOMA-TIME(eα)⊈P/poly for any α>0.
Proof sketch: Assume otherwise. Fix an integer k such that 1/k<α. Let me abbreviate OcOMT(f)=OMA-TIME(poly(f(poly(n)))∩coOMA-TIME(poly(f(poly(n))).
Since nobody posted an answer, I will answer the question myself with the comments posted in the original question. Thanks to Robin Kothari, Emil Jerabek, Andrew Morgan and Alex Golovnev.
MAexp seems to be the smallest uniform class with known superpolynomial lower bounds.
OP2 seems to be the smallest known class not having circuits of size nk for each fixed k.
By diagonalization, it follows that for any super-polynomial (and space-constructible) function s, DSPACE[s(n)] doesn't have polynomial-size circuits. PSPACE versus P/poly is still open.
P/poly is closed under complement, so it contains NEXP if and only if it contains coNEXP.
Please correct me if I'm wrong, but as far as I can tell, we actually don't know a fixed-polynomial size lower bound for OP2. This is because the usual Karp-Lipton argument doesn't go through for OP2, since we don't know whether NP⊆OP2 (in fact, this is equivalent to asking whether NP⊆P/poly). However, we do know that NPOP2 isn't contained in SIZE(nk) for any k, as shown by Chakaravarthy and Roy.