矩阵问题的复杂性


21

我的研究最近出现了以下问题。由于不是算法问题方面的专家,因此我在搜索合适的问题以减少问题方面进行了广泛的Google搜索。我看不到3SAT的工作原理,即使ZOE的精神相似,减少也不明显。另一种可能是实在论的存在论。这似乎也不是完全匹配,但我对此可能是错的。

问题: 和都是您喜欢的字段上的矩阵。我们假定指数任意一组被设置为0。同样,指数任意一组被设置为0。问:可以在我们的剩余指标填写一个这样= ňABn×nABABAB=In

示例:A=[0a1a20]B=[b100b2]。不可能。

这个(在n)的计算复杂度是多少?

对于在文献中寻找相似结果的任何提示或想法,将不胜感激。

编辑(完全忘了这篇文章):在arXiv上可用的最新工作中(如果有人对预印本感兴趣,请告诉我),我们已经表明问题在任何有限域上都是NP难题。


4
如果基字段足够大,则检查是否可以使变为可逆的问题将简化为多项式身份测试(的补充)。只需注意,A B的行列式是缺失项的值的多项式。ABAB
安德鲁·摩根

3
同样,如果我们将B的条目限制为零,并且该字段的特性大于n,则这种情况会减少为两部分完美匹配。您可以想象为每个索引i选择另一个索引k i,以便将A i k i = B k ii = 1设置,并将其余条目设置为零。(投入更多的伤害只会造成伤害。)然后,条件A B = I n可以表示为带有索引i的二部图。ABnikiAi,ki=Bki,i=1AB=Ini on the left, choices of ki on the right, and edges for (i,ki) pairs for which we can set Ai,ki and Bki,i.
Andrew Morgan

2
@MB:此外,请注意,在检查是否可逆时与检查AB是否可以分别变为可逆时相同,检查A B是否可逆是与检查是否可以使A B变为可逆相同。可以由身份。为了检查是否一个(相应的)可以制成可逆的,你说“可以有效地进行,”但在你的设置,这是等同于检查的支持之间的完美匹配一个(相应地,ABABABABABAB)(相同的问题,但与安德鲁·摩根的第二条评论略有不同)。
约书亚·格罗夫

2
PPAD中可能会出现此问题的一些特殊情况,例如线性互补问题:kintali.wordpress.com/2009/08/04/linear-complementarity-prob‌lem这将表明找到解决方案很困难。
domotorp

2
In case others haven't already figured this out, there's a choice of A,B (over any field) for which AB=I, but for which the perfect matching test fails. ie there is no permutation matrix P so that P is supported on the support of A, and P1=P is supported on the support of B. The choice is given by A=[110101111] and B=[111011101].
Andrew Morgan

Answers:


8

Well, here's a not-horrible upper bound over C: PSPACE, or assuming the Riemann Hypothesis, AM. This is because for any given patterns of zeros for A,B, checking whether one can make AB=In is checking whether a certain system of n2 integer polynomial equations has a solution in C, and this can be done in these upper bounds, by Koiran.

Another approach is to try to leverage the fact that this is in fact a system of bilinear equations. Solving bilinear equations is equivalent to finding "rank 1" solutions to linear equations. I've been trying to determine if there are better upper bounds for solving bilinear systems in general, but with no luck so far. It's also possible that one could leverage the particular structure of these bilinear equations to get something better than what's known in general...


Doesn't PSPACE follow from the problem being in NP?
M.B.

2
@M.B.: Over finite fields the problem is obviously in NP (just show the setting of variables), which is a better upper bound than AM, even. When the input is integer polynomials but you ask for a solution in the complex numbers, when there is a solution it's not even obvious that you can write it down in any finite amount of memory, let alone polynomially-bounded.
Joshua Grochow
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.