这个非常好的问题涉及多个方面,因此我将相应地构建此答案。
1.盒装问题的答案为否。术语通过你的朋友建议确实是一个反例。Ω3=(λx.xxx)(λx.xxx)
之前在评论中注意到,有人有反例,例如“食人魔” ,直到问题被限制条款不弱的头部正常形态。这样的项称为零项。这些术语在任何替换下都不会降低为lambda。K∞=YK
对于任何定点组合器(fpc),Y都是所谓的静音(AKA“ root-active”)术语:每次减少都会进一步减少为redex。YI
是不是哑巴; 既不是 Ω 3 -为是明显的,通过检查它的集约简的,这是
{ Ω 3 (λ X 。X X X )⋯ (λ X 。X X X )⏟ ķ |K∞Ω3 −
{Ω3(λx.xxx)⋯(λx.xxx)k∣k∈N}
而不是给出一个准确的说法,为什么是忽略所有财务执行情况ÿYIY(事实上,对于任何循环组合子)这可能是费力又希望再清楚不过-我将把你的问题有明显的推广,限制对静音方面也是如此。−−
静音项是零项的子类,而零项是不可解的项的子类。这些在一起可能是lambda演算中“无意义”或“未定义”概念的最受欢迎选择,分别对应于琐碎的Berarducci,Levy-Longo和B \“ ohm树。 Paula Severi和Fer-Jan de Vries已对其进行了详细分析[1]静默项构成了该晶格的底部元素,即“ undefined”的限制性最强的概念。
2.令为静音项,令Y为具有Y I = M的属性的循环组合器。MYYI=M
首先我们争辩说,对于一个新鲜变量,Y z实际上看起来很像您描述的Y M,它是通过将z散布在M的某些还原上而获得的。zYzYMzM
通过Church-Rosser,和M具有相同的归约M '。取标准归一化R :Y I s M '。的每subterm 中号“对应于一个独特的subterm ÿ 我≡ ÿ ž [ ž := 我]该还原下。对于任何subterm Ç [ Ñ ] = 中号',- [R因素Ñ 0 ] ↠ 瓦特YIMM′R:YI↠sM′M′YI≡Yz[z:=I]C[N]=M′R,其中,所述中间腿是弱头减少(和最终腿是内部)。 Ñ是“守卫”由Ž当且仅当该第二腿收缩一些归约式我P,与我的取代的后代[žYI↠C[N0]↠whC[N1]↠iC[N]NzIPI。[z:=I]
显然,必须保护M的某些子项,否则它也将是静音的。另一方面,必须小心不要保护非终止所需的那些子项,否则它将无法形成循环组合器的无限B \“欧姆树。YM
因此,找到一个静音项就足够了,在该静音项中,每个归约项中的每个子项都需要进行非归一化,这意味着将变量放在该子项的前面会产生一个归一化项。
考虑,其中w ^ = λ w ^ 。w ^ 我w ^ w ^。就像Ω一样,但是在每次迭代中,我们通过向其提供标识来检查在参数位置W的出现是否被head变量“阻止”。将z置于任何子项前面将最终产生形状z P 1 ⋯ P k的正则形式,其中每个P i为I,W或其中的“ z散布”。所以ΨΨ=WWW=λw.wIwwΩWzzP1⋯PkPiIWzΨ 是广义问题的反例。
定理。没有循环组合器使得Y I = Ψ。YYI=Ψ
证明。该组的所有约简的是{ w ^ w ^ ,w ^ 我w ^ w ^ ,我我我我w ^ w ^ ,我我我w ^ w ^ ,我我w ^ w ^ ,我w ^ w ^ }。为了敞篷Ψ,ÿ 我必须减少其中之一。在所有情况下该论点都是相同的;为了具体,假定ÿ 我↠ 我我w ^ w ^。Ψ{WW,WIWW,IIIIWW,IIIWW,IIWW,IWW}ΨYIYI↠IIWW
任何标准还原可以被分解为
ÿ 我↠ 瓦特 P Ñ 4,P ↠ 瓦特 Q Ñ 3,Q ↠ 瓦特Ñ 1 Ñ 2,从而 ÿ 我↠ 瓦特Ñ 1 ñ 2 Ñ 3 Ñ 4 ñ 1 ↠ 我,ñ 2 ↠ 我,ñ 3YI↠sIIWW
YI↠wPN4,P↠wQN3,Q↠wN1N2,thus YI↠wN1N2N3N4N1↠I,N2↠I,N3↠W,N4↠W
让我们参阅还原为- [R 0,和从开始减少Ñ 我作为ř 我。YI↠wN1N2N3N4R0NiRi
这些减少可以通过替代被提升,得到
ř ž 0:ý ž ↠ ž ķ(中号1 中号2 中号3 中号4)ñ 我 ≡ 中号我 [ ž := 我]
,使得- [R 0是组合物ÿ 我ř ž 0 [ ž := 我] ↠我[z:=I]
Rz0:Yz↠zk(M1M2M3M4)Ni≡Mi[z:=I]
R0YI↠Rz0[z:=I]Ik(N1⋯N4)↠kwN1⋯N4
Similarly, we can lift each Ri:Ni↠N∈{I,W} as
Rzi:Mi↠NziRi:Ni↠Rzi[z:=I]Nzi[z:=I]↠IN
The second leg of this factorization of Ri consists precisely of contracting those I-redexes which are created by the substitution Nzi[z:=I]. (In particular, since N is a normal form, so is Nzi.)
Nzi is what we called a "z-sprinkling of N", obtained by placing any number of zs around any number of subterms of N. Since N∈{I,W}, the shape of Nzi will be one of
zk1(λx.zk2(x))zk1(λw.zk2(zk3(zk5(zk7(w)zk8(λx.zk9(x)))zk6(w))zk4(w)))
So M1M2M3M4↠Nz1Nz2Nz3Nz4, with Nzi a z-sprinkling of I for i=1,2 and of W for i=3,4.
At the same time, the term Nz1Nz2Nz3Nz4 should yet reduce to yield the infinite fpc Bohm tree z(z(z(⋯))). So there must exist a "sprinkle" zkj in one of the Nzi which comes infinitely often to the head of the term, yet does not block further reductions of it.
And now we are done. By inspecting each Nzi, for i≤4, and each possible value of kj, for j≤2+7⌊i−12⌋, we find that no such sprinkling exists.
For example, if we modify the last W in IIWW as Wz=λw.z(wIww), then we get the normalizing reduction
IIWWz→IWWz→WWz→WzIWzWz→z(IIII)WzWz↠zIWzWz
(Notice that Ω admits such a sprinkling precisely because a certain subterm of it can be "guarded" without affecting non-normalization. The variable comes in head position, but enough redexes remain below.)
3.
The "sprinkling transformation" has other uses. For example, by placing z in front of every redex in M, we obtain a term N=λz.Mz which is a normal form, yet satisfies the equation NI=M. This was used by Statman in [2], for example.
4.
Alternatively, if you relax the requirement that YI=M, you can find various (weak) fpcs Y which simulate the reduction of M, while outputting a chain of zs along the way. I am not sure this would answer your general question, but there are certainly a number of (computable) transformations M↦YM which output looping combinators for every mute M, in such a way that the reduction graph of YM is structurally similar to that of M. For example, one can write
Y⌈M⌉z={z(Y⌈P[x:=Q]⌉z)Y⌈N⌉zM≡(λx.P)QM is not a redex and M→whN
[1] Severi P., de Vries FJ. (2011) Decomposing the Lattice of Meaningless Sets in the Infinitary Lambda Calculus. In: Beklemishev L.D., de Queiroz R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science, vol 6642.
[2] Richard Statman. There is no hyperrecurrent S,K combinator. Research
Report 91–133, Department of Mathematics, Carnegie Mellon
University, Pittsburgh, PA, 1991.