讨论内容:
我最近一直在花一些个人时间来学习通讯复杂性方面的各种知识。例如,我重新熟悉了Arora / Barak中的相关章节,开始阅读一些论文,并由Kushilevitz / Nisan订购了该书。直观地讲,我想将通信复杂度与计算复杂度进行对比。特别是,我对以下事实感到震惊:计算复杂性已发展成为将计算问题放入复杂性类的丰富理论,其中某些问题(至少从一个角度而言)可以反过来针对(例如,至少从一个角度来看)完整问题进行设想。每个给定的班级。例如,当解释 对于第一次接触某人的人,很难避免与SAT或其他一些NP完全问题进行比较。
相比之下,我从未听说过通信复杂性类的类似概念。我知道许多关于“定理完成”的问题的例子。举例来说,作为一个总体框架,作者可以描述给定的通信问题,然后证明了相关定理牛逼持有我˚F ˚F通信问题可以得到解决X或更少的位(对于某些X依赖于特定的定理/问题对)。当时在文献中使用的术语是P对T是“完整的” 。
此外,在Arora / Barak通信复杂性一章草案中有一条诱人的线(似乎已在最终印刷版中删除/调整)指出:“通常,人们可以考虑类似于,c o N P的通信协议。,P ħ等。” 但是,我注意到两个重要的遗漏:
- “类比”概念似乎是一种计算通信复杂度的方法,该通信复杂度是通过访问不同类型的资源来解决给定协议的,但是仅在定义适当的通信复杂度类别时就停止了...
- 从绝大多数结果/定理/等的意义上讲,大多数通信复杂性似乎都相对较低。围绕较小的,特定的,多项式大小的值。这有点令人困惑,为什么说对于计算很有趣,但是类似的概念对于通信却似乎不太有趣。(当然,我可能只是因为不了解“高级”通信复杂性概念而感到过失。)
问题:
通信复杂度是否与计算复杂度类有类似的概念?
和:
如果是这样,它与复杂性类的“标准”概念相比如何?(例如,“通信复杂性类”是否存在自然的局限性,从而导致它们本质上无法满足所有计算复杂性类的需求?)如果不是,“大局面”的原因是,类对于计算复杂性是一种有趣的形式主义,但并非如此沟通复杂吗?