Questions tagged «confusion-matrix»

3
如何使用predict_generator对Keras中的流测试数据进行预测?
在Keras从头开始培训卷积网络的博客中,代码仅显示了运行在培训和验证数据上的网络。那测试数据呢?验证数据是否与测试数据相同(我认为不是)。如果在与train和validation文件夹相似的行上有一个单独的测试文件夹,我们如何获得测试数据的混淆矩阵。我知道我们必须使用scikit Learn或其他软件包来执行此操作,但是如何从类明智的测试数据概率中获取一些信息呢?我希望将其用于混淆矩阵。

3
最佳科学计算语言[关闭]
已关闭。这个问题需要更加集中。它当前不接受答案。 想改善这个问题吗?更新问题,使其仅通过编辑此帖子来关注一个问题。 5年前关闭。 似乎大多数语言都具有一定数量的科学计算库。 Python有 Scipy Rust 有 SciRust C++有几个包括ViennaCL和Armadillo Java具有Java Numerics和Colt其他几个 且不说像语言R和Julia明确的科学计算而设计。 有这么多种选择,您如何选择适合任务的最佳语言?另外,哪种语言的性能最高?Python并且R似乎在该领域具有最大的吸引力,但从逻辑上讲,编译语言似乎是一个更好的选择。会有什么表现胜过Fortran?此外编译语言往往有GPU加速,而解释性语言如R并Python没有。选择一种语言时应该考虑什么?哪些语言可以在效用和性能之间取得最佳平衡?还有我错过的具有重要科学计算资源的语言吗?
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

3
如何使大型混淆矩阵更易于阅读?
我最近发布了369个类的数据集(link)。我对它们进行了一些实验,以了解分类任务的难度。通常,如果有混淆矩阵来查看所犯错误的类型,我会喜欢它。但是,一个矩阵并不实用。369 × 369369×369369 \times 369 有没有办法提供有关大型混淆矩阵的重要信息?例如,通常有很多0并不是那么有趣。是否可以对类进行排序,以使大多数非零条目都位于对角线附近,以便允许显示作为完整混淆矩阵一部分的多个矩阵? 这是一个大混淆矩阵的例子。 野外的例子 EMNIST的图6 看起来不错: 很容易看到很多情况。但是,这些只有班级。如果使用,而不是只有一列的整个页面,这可能可能是3倍之多,但也仍然只有3 ⋅ 26 = 78类。甚至没有接近369类HASY或1000种ImageNet。2626263 ⋅ 26 = 783⋅26=783 \cdot 26 = 78 也可以看看 我对CS.stackexchange的类似问题
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.