Questions tagged «hyperparameter»

8
选择学习率
我目前正在SGD使用反向传播为神经网络实现随机梯度下降,尽管我了解其目的,但我对如何选择学习率的值存在一些疑问。 学习率是否与误差梯度的形状有关,因为它决定了下降率? 如果是这样,您如何使用此信息来告知您有关价值的决定? 如果不是那样,我应该选择哪种值,以及如何选择它们? 似乎您希望使用较小的值来避免过冲,但是如何选择一个值以免陷入局部最小值或花很长时间下降呢? 保持恒定的学习速度有意义吗?还是应该在接近梯度最小值时使用一些指标来更改其值? 简而言之:如何选择SGD的学习率?



4
使用Keras(Python)进行LSTM-RNN的超参数搜索
来自Keras RNN教程的文章:“ RNN 很棘手。批大小的选择很重要,损耗和优化器的选择很重要,等等。某些配置无法融合。” 因此,这是关于在Keras上调整LSTM-RNN的超参数的一个普遍问题。我想知道一种为您的RNN查找最佳参数的方法。 我从Keras'Github上的IMDB示例开始。 主要模型如下: (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features, test_split=0.2) max_features = 20000 maxlen = 100 # cut texts after this number of words (among top max_features most common words) batch_size = 32 model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(LSTM(128)) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) # try using …

3
最佳科学计算语言[关闭]
已关闭。这个问题需要更加集中。它当前不接受答案。 想改善这个问题吗?更新问题,使其仅通过编辑此帖子来关注一个问题。 5年前关闭。 似乎大多数语言都具有一定数量的科学计算库。 Python有 Scipy Rust 有 SciRust C++有几个包括ViennaCL和Armadillo Java具有Java Numerics和Colt其他几个 且不说像语言R和Julia明确的科学计算而设计。 有这么多种选择,您如何选择适合任务的最佳语言?另外,哪种语言的性能最高?Python并且R似乎在该领域具有最大的吸引力,但从逻辑上讲,编译语言似乎是一个更好的选择。会有什么表现胜过Fortran?此外编译语言往往有GPU加速,而解释性语言如R并Python没有。选择一种语言时应该考虑什么?哪些语言可以在效用和性能之间取得最佳平衡?还有我错过的具有重要科学计算资源的语言吗?
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

2
科学家如何提出使用正确的隐马尔可夫模型参数和拓扑?
我了解如何在基因组序列(例如寻找基因)中使用隐马尔可夫模型。但是我不明白如何提出一个特定的马尔可夫模型。我的意思是,模型应具有多少个状态?有多少种可能的过渡?模型应该有一个循环吗? 他们怎么知道他们的模型是最优的? 他们是否想像出10种不同的模型,对这10种模型进行基准测试并发布最佳模型?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.