有关晶体管放大的基本问题


17

谁能解释晶体管如何放大电压或电流?根据我的说法,放大意味着-您发送的东西很小,它就会更大。例如,我想放大声波。我对一个声音放大器说悄悄话,结果说它大了5倍(取决于放大倍数)

但是,当我读到晶体管放大作用时,所有教科书都说,由于基极电流ΔIb的变化很小,但发射极电流ΔIe的变化也较大,因此存在放大。但是放大在哪里?按照我的定义,正在放大什么?我对放大一词的理解错误吗?电流如何从低电阻区域转移到高电阻区域?

我想我已经了解晶体管的构造以及电流的流动方式。因此,谁能清楚地解释晶体管的放大作用并将其与我对放大的理解联系起来。


@ChrisStratton这是关于将电子设备
Green Noob

您是否问自己,为什么书中谈论的是基本电流的变化而不是简单的“电流”?
0x6d64'1

@ 0x6d64您能更详细一点吗?
Green Noob 2012年

这里有一些非常差的答案。很多混乱,晶体管会放大电流,晶体管会放大电压等吗?
Rhody

Answers:


18

我首先从放大的定义开始。以最一般的方式,放大只是两个值之间的比率。这并不意味着输出值大于输入值(尽管这是最常用的方式)。当前的变化是大还是小,这也不重要。

现在让我们转到一些常用的放大值:

最重要的(也是您要谈论的问题)是。它定义为,其中是流入收集器的电流,而是流入基极的电流。如果我们稍微重新排列公式,将得到,这是最常用的公式。由于该公式,有人说晶体管“放大”了基极电流。ββ=IcIbIcIbIc=βIb

现在,这与发射极电流有什么关系?好,我们还有公式将该公式与第二个公式结合使用时,得到。从我们可以得到发射极电流- é = β b + b = bβ + 1 (请注意,ê是目前进入发射器,所以它的负)。Ic+Ib+Ie=0βIb+Ib+Ie=0Ie=βIb+Ib=Ib(β+1)Ie

从中可以看到,在计算中使用作为方便的工具,我们可以看到晶体管的基极电流和晶体管的发射极电流之间的关系。由于实际上β处于数百至数千的范围内,因此可以说“小”基极电流被“放大”为“大”集电极电流(这又使“大”发射极电流)。请注意,到目前为止,我没有谈论任何增量。这是因为作为元件的晶体管不需要改变电流。您只需将基极连接到恒定的直流电流,晶体管即可正常工作。如果需要改变电流,则ββ

还使用了另一个值,它的名称是。这是什么:α = I cα。当我们重新安排,我们可以看到,Ç=αË。因此,α是放大发射极电流以产生集电极电流的值。在这种情况下,放大实际上会给我们提供较小的输出(尽管实际上α接近于1,大约为0.98或更高),因为众所周知,从晶体管流出的发射极电流是基极电流和集电极电流进入晶体管。α=IcIeIc=αIeαα

现在,我将讨论晶体管如何放大电压和电流。秘诀是:事实并非如此。电压或电流放大器可以!放大器本身是更复杂的电路,它正在利用晶体管的特性。它还具有输入节点和输出节点。电压放大率是这些节点之间的电压之比。电流放大率是两个节点之间的电流之比:Ai=IoutAv=VoutVin。我们还有功率放大,这是电流和电压放大的产物。请注意,放大率可能会根据我们选择作为输入节点和输出节点的节点而变化!Ai=IoutIin

您可以在这里找到一些与晶体管有关的更有趣的值

因此,总结一下:我们有晶体管正在做某事。为了安全地使用晶体管,我们需要能够代表晶体管的功能。表示晶体管中发生的过程的一种方式是使用术语“放大”。因此,使用放大倍数,我们可以避免实际上了解晶体管中发生的事情(如果您有任何半导体物理课程,您将在那儿学习),并且只有很少的方程式对大量实际问题有用。


非常感谢您回答我之前的问题。但是你能告诉我为什么作者在解释电压“放大”时串联了一个5 Kohm电阻吗?&他从哪里获得20欧姆的输入电阻?Link
Green Noob 2012年

并不能真正回答放大信号的来源。
rhody

@rhody返回到我在看问题时,我确定主要问题是术语的使用,因此提供了术语答案。由于OP已经拥有有关晶体管的裁判,因此无需详细解释实际发生的情况。
AndrejaKo

据我了解,放大是指您增加信号强度时,它是基于信号携带的能量并以功率(瓦)为单位进行测量的。因此,放大器会增加功率。“电压”放大器在不降低电流的情况下提高信号电压,从而提高输出功率。“功率”放大器可同时提高交流电压和交流电流,因此具有显着的功率增益(超过电压放大器)。
X先生

@XI先生明确不同意您的理解。即,一般而言,我们具有“放大”作为抽象工具,然后我们对该工具有实际用途。我明确决定不要通过参考实际用途来弄混这个答案,因为我相信首先了解自己的抽象工具非常有用。
AndrejaKo

7

晶体管不放大。想象一下声波撞击麦克风:实际上发生的是声音信号没有传递到麦克风中,但是麦克风会产生与声音信号相对应的信号;这不是实际信号。

请记住,现实世界中的实际信号不能被放大或衰减。您可以捕捉声音或任何其他现实世界的信号吗?不能。无论如何,我们只能建立一个可以在现实世界中发挥作用的系统;声波撞击麦克风,光线撞击相机镜头等。

但是,对于晶体管而言,您可以将输入信号施加到基极,然后在集电极中获得与输入信号相对应的,振幅更大的信号。请记住,发生这种情况是因为由于电阻的变化,输入侧的小变化将对应于输出侧的大变化。这只是一对一的效果。输出信号完全是一个更大幅度的信号,而不是实际信号。


这根本无法回答问题。
rhody

实际上,电波和相当一部分电荷载流子确实从基极传递到发射极,因此,可以说新信号的一部分是由前一个信号组成的。但这是很系统的,当对我们来说,信号是电压电平,可测量,可重复时...
Brethlosze

5

所述信号被放大。根据晶体管放大器的设计,实际基极电流可能会也可能不是输出电流的一部分。不要迷恋于放大的定义,该定义要求每个输入电子变大然后传递到输出...


请解释?
Green Noob 2012年

@GreenNoob-大多数晶体管放大器具有偏置电流,以确保电路线性工作。仅存在偏置电流,发射极电流大于基极电流是正确的,但这并不是很有趣,因为这些电流只是常数。这些书谈到电流 b / c的变化,我们通常认为放大的信号被施加为偏置电流之上的波动。
JustJeff 2012年

4

BJT(双极结型晶体管)的工作原理使它变得有用,它可以放大电流。投入小电流,获得大电流。放大因子是所述晶体管的一个重要参数,并且被称为。通用晶体管可以具有例如100 的h F E,有时更高。功率晶体管的工作要做得更少,例如20到30。 因此,如果我在通用NPN晶体管的基极注入1 mA的电流,我将获得100 mA的集电极电流。那是放大,对吗?电流放大hFEhFE

电压放大怎么样?好吧,让我们添加几个电阻。电阻很便宜,但是如果您想赚钱,可以尝试称其为“电压-电流转换器” :-) 来出售它们。

enter image description here

我们添加了一个基极电阻,它将导致基极电流为

IB=VB0.7VRB

而且我们知道集电极电流高出h F E倍,因此 IChFE

IC=hFE(VB0.7V)RB

电阻真的很棒,因为在“电压-电流转换器”旁边您还可以将它们用作“电流-电压转换器”!(我们可以为他们收取更多费用!)由于欧姆定律:

VRL=RLIC

VC=VCCVRL

我们得到

VC=VCCRLhFE(VB0.7V)RB

要么

VC=hFERLRBVB+(hFERLRB0.7V+VCC)

The term between the brackets is a constant which we're not interested in at the moment. The first term shows that VC is VB multiplied by some factor depending on three constants. Let's use concrete values: 100 for hFE, 10 kΩ for RB and 1 kΩ for RC. Then (again ignoring the constant factor)

VC=hFERLRBVB=1001kΩ10kΩVB=10VB

So the output voltage is 10 times the input voltage plus a constant bias. Looks like we can use the transistor for voltage amplification as well.


1
In the strict physics sense, transistors do not amplify current, since even the bipolar transistor is controlled using the base emitter voltage, but I agree it's a convenient shorthand. amasci.com/amateur/transis.html
Mister Mystère

@MisterMystère: a bipolar transistor in common emitter is controlled by base current, not voltage. It's the base current that causes an X times larger collector current. You're wrong.
Joris Groosman

@JorisGroosman Ever heard of the textbook "Art of Electronics?" They teach bipolar transistors with voltage-input design philosophy, not current input. Author Win Hill specifically points out all the flaws in the hfe-based, current-input viewpoint, and shows how they're solved by seeing BJTs as voltage driven; ruled by the Ebers-Moll equation. He points out that current-input doesn't apply to diff amp, current mirror or cascode. Check out one of his forum responses about BJT voltage input versus current input: cr4.globalspec.com/comment/720374/Re-Voltage-vs-Current
wbeaty

@wbeaty: Yes, I know AoE. Odd thing: since the 1950s engineers have calculated collector current as a function of base current is a gazillion of practical applications, and they all work! Current as a function of base voltage probably doesn't go beyond the blackboard.
Joris Groosman

No,you don't know AOE, since they show why hfe DOESN'T work for analog design. Amps based in hfe will fail if temp drifts a couple of degrees. The authors push the voltage-based BJT design philosophy. As Win Hill points out, hfe doesn't explain voltage-input stages such as emitter-followers or diff amps. Op amps and their voltage inputs are hardly a blackboard-only concept. They worK, and are immune to vast changes in the hfe of the transistors involved. Yes, hfe is a useful concept, but without voltage-based signals and Ebers-Moll, a large part of modern analog design would fail.
wbeaty

3

Amplifiy sound, and you're amplifying the energy-flow: the input watts of sound become larger output watts.

Note that an electrical transformer doesn't amplify. It can step up voltage, but it cant increase the watts.

Transistors (and any sort of valve or switch) can amplify. They do it by using a tiny wattage to control a power supply which can output a huge wattage. The large output comes from the power supply, while the input signal is valving the transistpr on and off.

If you have a giant hydraulic press, you can crush cars by touching a valve switch with your little finger. The valve amplified your finger motion to mash Chevys. But actually it was the hundreds-HP haudraulic supply which provided the increased wattage. With NPNs, same idea. Transistors are valves for flowing charge instead of flowing haudraulic fluid.


Nice explanation... To move it to the electrical domain, we can simply say the transistor is an "electrically-controlled resistor" inserted in series ("rheostat") or in parallel ("shunt") to the load. Thus it forms a voltage or current divider. To be more precise, we can only add that this "resistor" is non-linear, and it is controlled both by the side of the input source and the load. And also, the transistor is a passive, not active device (regarding the power).
Circuit fantasist

From this "energy viewpoint", the transistor does not amplify; contrary, it attenuates the power of the source... it does not produce energy; it consumes energy.
Circuit fantasist

reading all the answers of yours really helps me a lot, especially thanks to @wbeaty, your explaination is realllly nice!

Your car crush analogy is soooo much easier to understand than a water valve. Thanks!
dval

0

What is my understanding is that for a transistor to amplify you need to bias it properly. Forward biasing of BE junction makes it a conducting diode so input resistance is less. Reverse biasing CE junction makes it non conducting diode so output resistance is high. And if Ic is almost equal to Ie then the current causes a low voltage drop at input and large one at output. This is why its called an Amplifier.


0

With a transistor, you can achieve this: Give a small signal(ac) at input, and get a larger valued(higher amplitude) signal at output. But this is not all. You have to give DC supply at collector and base; emitter if required. This is called biasing the dc point. The rms power you get at the output will be less than the dc power you have supplied.

If you want to do analysis, there are two steps involved for any circuit.

  1. DC analysis: don't consider any ac signal. Find out the values of all diode currents based on dc voltage at various nodes(Collector, base , emitter). This is done by using KVL along various loops.

  2. AC model: Image has been taken from the book "Electronic Devices and Circuit Theory
    This makes very clear: what we draw as a circuit v/s what elements are actually present inside. Going further, the diode has forward resistance. So the actual model will be like this:

From DC analysis, you must have found the value of Ie. According to diode theory, Re = (26mV/Ie). Our aim is to find Vout/Vin.
1. Vout will depend on Ic.
2. Ic will depend on Ib.
3. Ib will depend on Vin and Re.
4. Re we have found from DC analysis.

enter image description here In AC analysis, we make all the DC supply to 0V. By looking at this, you can make out that the output signal will be an amplified one, right?

Note: This was just to give you an intuitive idea that amplification does take place. But whether you will get amplification or not depends on whether the transistor is in linear(amplifier), saturation or cut off(switch). Again, what will be amplified(current or voltage) depends on type of configuration. So that all comprises of 3-4 chapters of any standard book on analog theory.

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.