将CSV文件读入pandas DataFrame的Python方法是什么(然后可以将其用于统计操作,可以具有不同类型的列等)?
我的CSV文件"value.txt"
具有以下内容:
Date,"price","factor_1","factor_2"
2012-06-11,1600.20,1.255,1.548
2012-06-12,1610.02,1.258,1.554
2012-06-13,1618.07,1.249,1.552
2012-06-14,1624.40,1.253,1.556
2012-06-15,1626.15,1.258,1.552
2012-06-16,1626.15,1.263,1.558
2012-06-17,1626.15,1.264,1.572
在R中,我们将使用以下命令读取此文件:
price <- read.csv("value.txt")
这将返回R data.frame:
> price <- read.csv("value.txt")
> price
Date price factor_1 factor_2
1 2012-06-11 1600.20 1.255 1.548
2 2012-06-12 1610.02 1.258 1.554
3 2012-06-13 1618.07 1.249 1.552
4 2012-06-14 1624.40 1.253 1.556
5 2012-06-15 1626.15 1.258 1.552
6 2012-06-16 1626.15 1.263 1.558
7 2012-06-17 1626.15 1.264 1.572
有没有Python的方法来获得相同的功能?