如何通过密钥按数据组访问熊猫


153

如何通过密钥访问groupby对象中的相应groupby数据帧?

通过以下groupby:

rand = np.random.RandomState(1)
df = pd.DataFrame({'A': ['foo', 'bar'] * 3,
                   'B': rand.randn(6),
                   'C': rand.randint(0, 20, 6)})
gb = df.groupby(['A'])

我可以遍历它来获取密钥和组:

In [11]: for k, gp in gb:
             print 'key=' + str(k)
             print gp
key=bar
     A         B   C
1  bar -0.611756  18
3  bar -1.072969  10
5  bar -2.301539  18
key=foo
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

我希望能够通过其键访问组:

In [12]: gb['foo']
Out[12]:  
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

但是当我尝试这样做时,gb[('foo',)]我得到了这个奇怪的pandas.core.groupby.DataFrameGroupBy对象,似乎没有任何与我想要的DataFrame相对应的方法。

我能想到的最好的是:

In [13]: def gb_df_key(gb, key, orig_df):
             ix = gb.indices[key]
             return orig_df.ix[ix]

         gb_df_key(gb, 'foo', df)
Out[13]:
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14  

但是,考虑到这些事情上熊猫通常是多么好,这有点令人讨厌。
这样做的内置方式是什么?

Answers:


191

您可以使用以下get_group方法:

In [21]: gb.get_group('foo')
Out[21]: 
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

注意:这不需要为每个组创建一个中间字典/每个子数据帧的副本,因此与使用来创建朴素的字典相比,其内存效率更高dict(iter(gb))。这是因为它使用了groupby对象中已经可用的数据结构。


您可以使用groupby切片选择不同的列:

In [22]: gb[["A", "B"]].get_group("foo")
Out[22]:
     A         B
0  foo  1.624345
2  foo -0.528172
4  foo  0.865408

In [23]: gb["C"].get_group("foo")
Out[23]:
0     5
2    11
4    14
Name: C, dtype: int64

72

Python for Data Analysis中的Wes McKinney(熊猫的作者)提供了以下配方:

groups = dict(list(gb))

它返回一个字典,其键是您的组标签,其值是DataFrames,即

groups['foo']

将产生您想要的东西:

     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

1
谢谢,这非常有用。如何修改代码以 groups = dict(list(gb))仅存储列C?假设我对其他列不感兴趣,因此不想存储它们。
朱巴卜2014年

5
答案:dict(list( df.groupby(['A'])['C'] ))
朱巴卜2014年

4
注意:使用效率更高(但等效)dict(iter(g))。(尽管这get_group是最好的方法,因为它不涉及创建字典,也不会让您陷入大熊猫!:D)
Andy Hayden 2014年

我无法使用groups(dict(list(gb)),但您可以通过以下方式创建字典:gb_dict = {str(indx): str(val) for indx in gb.indx for val in gb.some_key}然后通过gb_dict[some_key]
user2476665

只需使用get_group(),多年以来就不需要此食谱。
smci

20

而不是

gb.get_group('foo')

我更喜欢使用 gb.groups

df.loc[gb.groups['foo']]

因为这样您也可以选择多个列。例如:

df.loc[gb.groups['foo'],('A','B')]

4
注意:您可以使用选择不同的列gb[["A", "B"]].get_group("foo")
安迪·海登

6
gb = df.groupby(['A'])

gb_groups = grouped_df.groups

如果要查找选择性的groupby对象,请执行:gb_groups.keys(),然后将所需的密钥输入到以下key_list中。

gb_groups.keys()

key_list = [key1, key2, key3 and so on...]

for key, values in gb_groups.iteritems():
    if key in key_list:
        print df.ix[values], "\n"

1

我正在寻找对GroupBy obj的几个成员进行抽样的方法-必须解决发布的问题才能完成此任务。

创建分组对象

grouped = df.groupby('some_key')

选择N个数据框并获取其索引

sampled_df_i  = random.sample(grouped.indicies, N)

抢团体

df_list  = map(lambda df_i: grouped.get_group(df_i), sampled_df_i)

可选-将所有内容重新转换为单个dataframe对象

sampled_df = pd.concat(df_list, axis=0, join='outer')

1
这行不通:sampled_df_i = random.sample(grouped.indicies, N)
irene

@irene-您可以提供指向较长示例/更多上下文的链接吗?
meyerson

我收到以下错误:AttributeError: 'DataFrameGroupBy' object has no attribute 'indicies'
irene
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.