什么朱利奥·佛朗哥说,对于多线程多处理与真一般。
但是,Python *还有一个问题:有一个全局解释器锁,可以防止同一进程中的两个线程同时运行Python代码。这意味着,如果您有8个核心,并且将代码更改为使用8个线程,则它将无法使用800%的CPU并无法以8倍的速度运行;它会使用相同的100%CPU,并以相同的速度运行。(实际上,它的运行速度会稍慢一些,因为即使您没有任何共享数据,线程处理也会带来额外的开销,但是现在暂时忽略它。)
也有例外。如果您的代码繁重的计算实际上不是在Python中发生的,而是在某些具有自定义C代码的库中执行的,这些代码可以正确地进行GIL处理,例如numpy应用程序,则您将从线程中获得预期的性能收益。如果繁重的计算是由运行并等待的某些子进程完成的,则情况也是如此。
更重要的是,在某些情况下,这无关紧要。例如,网络服务器花费大部分时间来读取网络中的数据包,而GUI应用花费大部分时间来等待用户事件。在网络服务器或GUI应用程序中使用线程的原因之一是允许您执行长时间运行的“后台任务”,而不会阻止主线程继续为网络数据包或GUI事件提供服务。这在Python线程中工作得很好。(从技术上讲,这意味着Python线程为您提供了并发性,即使它们没有为您提供核心并行性。)
但是,如果您使用纯Python编写受CPU约束的程序,则使用更多线程通常无济于事。
对于GIL,使用单独的进程没有这种问题,因为每个进程都有自己的单独的GIL。当然,线程和进程之间仍然具有与其他任何语言相同的权衡取舍–在进程之间共享数据比在线程之间共享更加困难,而且成本更高,运行大量进程或创建和销毁这些开销可能会很高等等。但是GIL在处理方面的平衡上权衡沉重,这对于C或Java而言并非如此。因此,您会发现自己在Python中比在C或Java中使用多处理的频率更高。
同时,Python的“含电池”理念带来了一些好消息:编写代码很容易,只需进行一次更改即可在线程和进程之间来回切换。
如果您根据独立的“作业”来设计代码,除了输入和输出,这些作业不与其他作业(或主程序)共享任何内容,则可以使用该concurrent.futures
库在线程池周围编写代码,如下所示:
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
executor.submit(job, argument)
executor.map(some_function, collection_of_independent_things)
# ...
您甚至可以获取这些作业的结果,并将其传递给其他作业,按执行顺序或完成顺序等待;等等。阅读有关Future
对象的部分以获取详细信息。
现在,如果事实证明您的程序一直在使用100%CPU,并且添加更多线程只会使其速度变慢,那么您就遇到了GIL问题,因此您需要切换到进程。您要做的就是更改第一行:
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
唯一真正的警告是,作业的自变量和返回值必须可腌制(而不需要花费太多时间或内存来腌制)才能使用跨进程。通常这不是问题,但有时是问题。
但是,如果您的工作不能自给自足怎么办?如果您可以根据将消息从一个传递到另一个的工作来设计代码,那仍然很容易。您可能必须使用threading.Thread
或multiprocessing.Process
代替依赖池。并且您将必须显式创建queue.Queue
或multiprocessing.Queue
对象。(还有很多其他选择,例如管道,套接字,带有斑点的文件等等。但是,要点是,如果执行器的自动魔力不足,则必须手动执行某些操作。)
但是,如果您甚至不能依靠消息传递怎么办?如果您需要两项工作来同时改变同一个结构并看到彼此的变化,该怎么办?在这种情况下,您将需要进行手动同步(锁定,信号量,条件等),并且,如果要使用进程,则需要显式的共享内存对象进行引导。这是当多线程(或多处理)变得困难时。如果可以避免,那就太好了;如果不能,那么您将需要阅读的内容超过某人可以提供的答案。
通过评论,您想了解Python中的线程和进程之间的区别。的确,如果您阅读了朱利奥·佛朗哥(Giulio Franco)的答案和我的知识以及我们所有的链接,那应该涵盖了所有内容……但是总结肯定会很有用,所以这里是:
- 线程默认共享数据;流程没有。
- 作为(1)的结果,在进程之间发送数据通常需要对其进行酸洗和酸洗。**
- (1)的另一个结果是,在进程之间直接共享数据通常需要将其放入低级格式,如Value,Array和
ctypes
Types。
- 流程不受GIL约束。
- 在某些平台(主要是Windows)上,创建和销毁进程的成本要高得多。
- 对流程有一些额外的限制,其中某些限制在不同平台上有所不同。有关详细信息,请参见编程指南。
- 该
threading
模块不具有该模块的某些功能multiprocessing
。(您可以使用multiprocessing.dummy
大多数缺少的API放在线程之上,也可以使用更高级别的模块,例如concurrent.futures
,不必担心。)
*出现此问题的实际上不是Python语言,而是该语言的“标准”实现CPython。其他一些实现没有JIL,例如Jython。
**如果您正在使用fork start方法进行多处理(在大多数非Windows平台上可以使用),则每个子进程都将获得启动子级时父级拥有的任何资源,这可能是将数据传递给子级的另一种方式。
Thread
模块(_thread
在python 3.x中调用)。老实说,我自己从来都不了解这些区别……