Answers:
例
#include <iostream>
template <int N> struct Factorial
{
enum { val = Factorial<N-1>::val * N };
};
template<>
struct Factorial<0>
{
enum { val = 1 };
};
int main()
{
// Note this value is generated at compile time.
// Also note that most compilers have a limit on the depth of the recursion available.
std::cout << Factorial<4>::val << "\n";
}
那有点有趣,但不是很实用。
要回答问题的第二部分:
这个事实在实践中有用吗?
简短的回答:有点。
长答案:是的,但是仅当您是模板守护程序时才可以。
要使用对其他人(例如库)确实有用的模板元编程来产生好的编程,确实非常困难(尽管可行)。为了帮助提高甚至有MPL(元编程库)。但是,尝试在模板代码中调试编译器错误,您将需要花费很长时间。
但是它被用于有用的东西的一个很好的实际例子:
Scott Meyers一直在使用模板工具来扩展C ++语言(我宽松地使用该术语)。您可以在此处阅读有关他的工作的“ 执行代码功能 ”
我用C ++ 11做过图灵机。C ++ 11添加的功能对于图灵机确实并不重要。它只是使用可变参数模板提供任意长度的规则列表,而不是使用不正确的宏元编程:)。条件的名称用于在stdout上输出图表。我删除了该代码以使样本简短。
#include <iostream>
template<bool C, typename A, typename B>
struct Conditional {
typedef A type;
};
template<typename A, typename B>
struct Conditional<false, A, B> {
typedef B type;
};
template<typename...>
struct ParameterPack;
template<bool C, typename = void>
struct EnableIf { };
template<typename Type>
struct EnableIf<true, Type> {
typedef Type type;
};
template<typename T>
struct Identity {
typedef T type;
};
// define a type list
template<typename...>
struct TypeList;
template<typename T, typename... TT>
struct TypeList<T, TT...> {
typedef T type;
typedef TypeList<TT...> tail;
};
template<>
struct TypeList<> {
};
template<typename List>
struct GetSize;
template<typename... Items>
struct GetSize<TypeList<Items...>> {
enum { value = sizeof...(Items) };
};
template<typename... T>
struct ConcatList;
template<typename... First, typename... Second, typename... Tail>
struct ConcatList<TypeList<First...>, TypeList<Second...>, Tail...> {
typedef typename ConcatList<TypeList<First..., Second...>,
Tail...>::type type;
};
template<typename T>
struct ConcatList<T> {
typedef T type;
};
template<typename NewItem, typename List>
struct AppendItem;
template<typename NewItem, typename...Items>
struct AppendItem<NewItem, TypeList<Items...>> {
typedef TypeList<Items..., NewItem> type;
};
template<typename NewItem, typename List>
struct PrependItem;
template<typename NewItem, typename...Items>
struct PrependItem<NewItem, TypeList<Items...>> {
typedef TypeList<NewItem, Items...> type;
};
template<typename List, int N, typename = void>
struct GetItem {
static_assert(N > 0, "index cannot be negative");
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename GetItem<typename List::tail, N-1>::type type;
};
template<typename List>
struct GetItem<List, 0> {
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename List::type type;
};
template<typename List, template<typename, typename...> class Matcher, typename... Keys>
struct FindItem {
static_assert(GetSize<List>::value > 0, "Could not match any item.");
typedef typename List::type current_type;
typedef typename Conditional<Matcher<current_type, Keys...>::value,
Identity<current_type>, // found!
FindItem<typename List::tail, Matcher, Keys...>>
::type::type type;
};
template<typename List, int I, typename NewItem>
struct ReplaceItem {
static_assert(I > 0, "index cannot be negative");
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename PrependItem<typename List::type,
typename ReplaceItem<typename List::tail, I-1,
NewItem>::type>
::type type;
};
template<typename NewItem, typename Type, typename... T>
struct ReplaceItem<TypeList<Type, T...>, 0, NewItem> {
typedef TypeList<NewItem, T...> type;
};
enum Direction {
Left = -1,
Right = 1
};
template<typename OldState, typename Input, typename NewState,
typename Output, Direction Move>
struct Rule {
typedef OldState old_state;
typedef Input input;
typedef NewState new_state;
typedef Output output;
static Direction const direction = Move;
};
template<typename A, typename B>
struct IsSame {
enum { value = false };
};
template<typename A>
struct IsSame<A, A> {
enum { value = true };
};
template<typename Input, typename State, int Position>
struct Configuration {
typedef Input input;
typedef State state;
enum { position = Position };
};
template<int A, int B>
struct Max {
enum { value = A > B ? A : B };
};
template<int n>
struct State {
enum { value = n };
static char const * name;
};
template<int n>
char const* State<n>::name = "unnamed";
struct QAccept {
enum { value = -1 };
static char const* name;
};
struct QReject {
enum { value = -2 };
static char const* name;
};
#define DEF_STATE(ID, NAME) \
typedef State<ID> NAME ; \
NAME :: name = #NAME ;
template<int n>
struct Input {
enum { value = n };
static char const * name;
template<int... I>
struct Generate {
typedef TypeList<Input<I>...> type;
};
};
template<int n>
char const* Input<n>::name = "unnamed";
typedef Input<-1> InputBlank;
#define DEF_INPUT(ID, NAME) \
typedef Input<ID> NAME ; \
NAME :: name = #NAME ;
template<typename Config, typename Transitions, typename = void>
struct Controller {
typedef Config config;
enum { position = config::position };
typedef typename Conditional<
static_cast<int>(GetSize<typename config::input>::value)
<= static_cast<int>(position),
AppendItem<InputBlank, typename config::input>,
Identity<typename config::input>>::type::type input;
typedef typename config::state state;
typedef typename GetItem<input, position>::type cell;
template<typename Item, typename State, typename Cell>
struct Matcher {
typedef typename Item::old_state checking_state;
typedef typename Item::input checking_input;
enum { value = IsSame<State, checking_state>::value &&
IsSame<Cell, checking_input>::value
};
};
typedef typename FindItem<Transitions, Matcher, state, cell>::type rule;
typedef typename ReplaceItem<input, position, typename rule::output>::type new_input;
typedef typename rule::new_state new_state;
typedef Configuration<new_input,
new_state,
Max<position + rule::direction, 0>::value> new_config;
typedef Controller<new_config, Transitions> next_step;
typedef typename next_step::end_config end_config;
typedef typename next_step::end_input end_input;
typedef typename next_step::end_state end_state;
enum { end_position = next_step::position };
};
template<typename Input, typename State, int Position, typename Transitions>
struct Controller<Configuration<Input, State, Position>, Transitions,
typename EnableIf<IsSame<State, QAccept>::value ||
IsSame<State, QReject>::value>::type> {
typedef Configuration<Input, State, Position> config;
enum { position = config::position };
typedef typename Conditional<
static_cast<int>(GetSize<typename config::input>::value)
<= static_cast<int>(position),
AppendItem<InputBlank, typename config::input>,
Identity<typename config::input>>::type::type input;
typedef typename config::state state;
typedef config end_config;
typedef input end_input;
typedef state end_state;
enum { end_position = position };
};
template<typename Input, typename Transitions, typename StartState>
struct TuringMachine {
typedef Input input;
typedef Transitions transitions;
typedef StartState start_state;
typedef Controller<Configuration<Input, StartState, 0>, Transitions> controller;
typedef typename controller::end_config end_config;
typedef typename controller::end_input end_input;
typedef typename controller::end_state end_state;
enum { end_position = controller::end_position };
};
#include <ostream>
template<>
char const* Input<-1>::name = "_";
char const* QAccept::name = "qaccept";
char const* QReject::name = "qreject";
int main() {
DEF_INPUT(1, x);
DEF_INPUT(2, x_mark);
DEF_INPUT(3, split);
DEF_STATE(0, start);
DEF_STATE(1, find_blank);
DEF_STATE(2, go_back);
/* syntax: State, Input, NewState, Output, Move */
typedef TypeList<
Rule<start, x, find_blank, x_mark, Right>,
Rule<find_blank, x, find_blank, x, Right>,
Rule<find_blank, split, find_blank, split, Right>,
Rule<find_blank, InputBlank, go_back, x, Left>,
Rule<go_back, x, go_back, x, Left>,
Rule<go_back, split, go_back, split, Left>,
Rule<go_back, x_mark, start, x, Right>,
Rule<start, split, QAccept, split, Left>> rules;
/* syntax: initial input, rules, start state */
typedef TuringMachine<TypeList<x, x, x, x, split>, rules, start> double_it;
static_assert(IsSame<double_it::end_input,
TypeList<x, x, x, x, split, x, x, x, x>>::value,
"Hmm... This is borky!");
}
“ C ++模板正在图灵完备 ”给出了图灵机在模板中的实现...这是不平凡的,并以非常直接的方式证明了这一点。当然,它也不是很有用!
我的C ++有点生锈,因此可能并不完美,但是已经接近了。
template <int N> struct Factorial
{
enum { val = Factorial<N-1>::val * N };
};
template <> struct Factorial<0>
{
enum { val = 1 };
}
const int num = Factorial<10>::val; // num set to 10! at compile time.
关键是要证明编译器将完全评估递归定义,直到获得答案为止。
举一个简单的例子:http : //gitorious.org/metatrace,一个C ++编译时光线跟踪器。
请注意,C ++ 0x将以以下形式添加非模板的,编译时的,图灵完整的工具constexpr
:
constexpr unsigned int fac (unsigned int u) {
return (u<=1) ? (1) : (u*fac(u-1));
}
您可以constexpr
在需要编译时间常数的任何地方使用-expression,但也可以constexpr
使用具有非const参数的-functions 来调用。
一件很酷的事情是,尽管标准明确指出编译时浮点算术不必与运行时浮点算术相匹配,但这最终将启用编译时浮点算术:
bool f(){ char array[1+int(1+0.2-0.1-0.1)]; //Must be evaluated during translation int size=1+int(1+0.2-0.1-0.1); //May be evaluated at runtime return sizeof(array)==size; }
f()的值是true还是false尚不确定。
Andrei Alexandrescu 撰写的《现代C ++设计-通用编程和设计模式》一书是接触有用和强大的通用编程模式经验的最佳场所。
阶乘示例实际上并未显示模板是图灵完整的,而是显示它们支持原始递归。证明模板是完整的最简单的方法是由Church-Turing论文完成的,即通过实现未类型化lambda演算的Turing机器(凌乱而又毫无意义的)或三个规则(app,abs var)。后者更简单,也更有趣。
当您了解C ++模板允许在编译时进行纯函数式编程时,所讨论的内容是一个非常有用的功能,这种形式化具有表现力,功能强大且优雅,但如果您经验不足,编写起来也会非常复杂。还要注意,有很多人发现仅获得大量的模板化代码通常需要付出很大的努力:(纯)功能语言就是这种情况,这使得编译更加困难,但令人惊讶地产生了不需要调试的代码。
我认为这称为模板元编程。
好吧,这是运行4状态2符号繁忙海狸的图灵机实现的编译时实现
#include <iostream>
#pragma mark - Tape
constexpr int Blank = -1;
template<int... xs>
class Tape {
public:
using type = Tape<xs...>;
constexpr static int length = sizeof...(xs);
};
#pragma mark - Print
template<class T>
void print(T);
template<>
void print(Tape<>) {
std::cout << std::endl;
}
template<int x, int... xs>
void print(Tape<x, xs...>) {
if (x == Blank) {
std::cout << "_ ";
} else {
std::cout << x << " ";
}
print(Tape<xs...>());
}
#pragma mark - Concatenate
template<class, class>
class Concatenate;
template<int... xs, int... ys>
class Concatenate<Tape<xs...>, Tape<ys...>> {
public:
using type = Tape<xs..., ys...>;
};
#pragma mark - Invert
template<class>
class Invert;
template<>
class Invert<Tape<>> {
public:
using type = Tape<>;
};
template<int x, int... xs>
class Invert<Tape<x, xs...>> {
public:
using type = typename Concatenate<
typename Invert<Tape<xs...>>::type,
Tape<x>
>::type;
};
#pragma mark - Read
template<int, class>
class Read;
template<int n, int x, int... xs>
class Read<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == 0),
std::integral_constant<int, x>,
Read<n - 1, Tape<xs...>>
>::type::type;
};
#pragma mark - N first and N last
template<int, class>
class NLast;
template<int n, int x, int... xs>
class NLast<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == sizeof...(xs)),
Tape<xs...>,
NLast<n, Tape<xs...>>
>::type::type;
};
template<int, class>
class NFirst;
template<int n, int... xs>
class NFirst<n, Tape<xs...>> {
public:
using type = typename Invert<
typename NLast<
n, typename Invert<Tape<xs...>>::type
>::type
>::type;
};
#pragma mark - Write
template<int, int, class>
class Write;
template<int pos, int x, int... xs>
class Write<pos, x, Tape<xs...>> {
public:
using type = typename Concatenate<
typename Concatenate<
typename NFirst<pos, Tape<xs...>>::type,
Tape<x>
>::type,
typename NLast<(sizeof...(xs) - pos - 1), Tape<xs...>>::type
>::type;
};
#pragma mark - Move
template<int, class>
class Hold;
template<int pos, int... xs>
class Hold<pos, Tape<xs...>> {
public:
constexpr static int position = pos;
using tape = Tape<xs...>;
};
template<int, class>
class Left;
template<int pos, int... xs>
class Left<pos, Tape<xs...>> {
public:
constexpr static int position = typename std::conditional<
(pos > 0),
std::integral_constant<int, pos - 1>,
std::integral_constant<int, 0>
>::type();
using tape = typename std::conditional<
(pos > 0),
Tape<xs...>,
Tape<Blank, xs...>
>::type;
};
template<int, class>
class Right;
template<int pos, int... xs>
class Right<pos, Tape<xs...>> {
public:
constexpr static int position = pos + 1;
using tape = typename std::conditional<
(pos < sizeof...(xs) - 1),
Tape<xs...>,
Tape<xs..., Blank>
>::type;
};
#pragma mark - States
template <int>
class Stop {
public:
constexpr static int write = -1;
template<int pos, class tape> using move = Hold<pos, tape>;
template<int x> using next = Stop<x>;
};
#define ADD_STATE(_state_) \
template<int> \
class _state_ { };
#define ADD_RULE(_state_, _read_, _write_, _move_, _next_) \
template<> \
class _state_<_read_> { \
public: \
constexpr static int write = _write_; \
template<int pos, class tape> using move = _move_<pos, tape>; \
template<int x> using next = _next_<x>; \
};
#pragma mark - Machine
template<template<int> class, int, class>
class Machine;
template<template<int> class State, int pos, int... xs>
class Machine<State, pos, Tape<xs...>> {
constexpr static int symbol = typename Read<pos, Tape<xs...>>::type();
using state = State<symbol>;
template<int x>
using nextState = typename State<symbol>::template next<x>;
using modifiedTape = typename Write<pos, state::write, Tape<xs...>>::type;
using move = typename state::template move<pos, modifiedTape>;
constexpr static int nextPos = move::position;
using nextTape = typename move::tape;
public:
using step = Machine<nextState, nextPos, nextTape>;
};
#pragma mark - Run
template<class>
class Run;
template<template<int> class State, int pos, int... xs>
class Run<Machine<State, pos, Tape<xs...>>> {
using step = typename Machine<State, pos, Tape<xs...>>::step;
public:
using type = typename std::conditional<
std::is_same<State<0>, Stop<0>>::value,
Tape<xs...>,
Run<step>
>::type::type;
};
ADD_STATE(A);
ADD_STATE(B);
ADD_STATE(C);
ADD_STATE(D);
ADD_RULE(A, Blank, 1, Right, B);
ADD_RULE(A, 1, 1, Left, B);
ADD_RULE(B, Blank, 1, Left, A);
ADD_RULE(B, 1, Blank, Left, C);
ADD_RULE(C, Blank, 1, Right, Stop);
ADD_RULE(C, 1, 1, Left, D);
ADD_RULE(D, Blank, 1, Right, D);
ADD_RULE(D, 1, Blank, Right, A);
using tape = Tape<Blank>;
using machine = Machine<A, 0, tape>;
using result = Run<machine>::type;
int main() {
print(result());
return 0;
}
Ideone证明运行:https ://ideone.com/MvBU3Z
说明: http //victorkomarov.blogspot.ru/2016/03/compile-time-turing-machine.html
GitHub上有更多示例:https : //github.com/fnz/CTTM
如果您想至少在理论上在编译时计算常量,这可能会很有用。查看模板元编程。
一个图灵机是图灵完备的,但是,这并不意味着你应该要使用一个产品代码。
以我的经验,尝试对模板进行任何琐碎的工作都是混乱,丑陋且毫无意义的。您没有办法“调试”您的“代码”,编译时错误消息将是晦涩的,通常在最不可能的地方,并且您可以通过不同的方式获得相同的性能优势。(提示:4!= 24)。更糟糕的是,您的代码对于一般的C ++程序员来说是难以理解的,并且由于当前编译器的广泛支持水平,可能无法移植。
模板非常适合用于通用代码生成(容器类,类包装器,混入),但不能-在我看来,模板的图灵完整性在实践中并不有用。
另一个不编程的例子:
template <int深度,int A,类型名B> 结构K17 { 静态const int x = K17 <深度+1,0,K17 <深度,A,B>> :: x + K17 <深度+1,1,K17 <深度,A,B>> :: x + K17 <深度+1,2,K17 <深度,A,B>> :: x + K17 <深度+1,3,K17 <深度,A,B>> :: x + K17 <深度+1,4,K17 <深度,A,B>> :: x; }; 模板<int A,类型名B> 结构K17 <16,A,B> {static const int x = 1; }; 静态常量int z = K17 <0,0,int> :: x; void main(void){}
发表于C ++模板图灵完备
K17<Depth+1>::x * 5
。