我有DataFrame
下面的熊猫。
df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4,5,6,6,6,7,7],
'value' : ["first","second","second","first",
"second","first","third","fourth",
"fifth","second","fifth","first",
"first","second","third","fourth","fifth"]})
我想通过[“ id”,“ value”]对此分组,并获得每个分组的第一行。
id value
0 1 first
1 1 second
2 1 second
3 2 first
4 2 second
5 3 first
6 3 third
7 3 fourth
8 3 fifth
9 4 second
10 4 fifth
11 5 first
12 6 first
13 6 second
14 6 third
15 7 fourth
16 7 fifth
预期结果
id value
1 first
2 first
3 first
4 second
5 first
6 first
7 fourth
我尝试了以下操作,仅给出的第一行DataFrame
。任何有关此的帮助表示赞赏。
In [25]: for index, row in df.iterrows():
....: df2 = pd.DataFrame(df.groupby(['id','value']).reset_index().ix[0])
first()
关于nans的行为非常令人惊讶,我想大多数人都不会想到。