查找名称包含特定字符串的列


137

我有一个带有列名称的数据框,我想找到一个包含特定字符串但与之不完全匹配的数据框。我在寻找'spike'列名喜欢'spike-2''hey spike''spiked-in'(该'spike'部分总是连续)。

我希望列名以字符串或变量的形式返回,因此我以后可以使用df['name']df[name]照常访问列。我试图找到方法,但没有成功。有小费吗?

Answers:


229

只需遍历DataFrame.columns,这是一个示例,在此示例中,您将获得匹配的列名称列表:

import pandas as pd

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)

spike_cols = [col for col in df.columns if 'spike' in col]
print(list(df.columns))
print(spike_cols)

输出:

['hey spke', 'no', 'spike-2', 'spiked-in']
['spike-2', 'spiked-in']

说明:

  1. df.columns 返回列名列表
  2. [col for col in df.columns if 'spike' in col]df.columns使用变量遍历列表col并将其添加到结果列表(如果col包含)'spike'。此语法是列表理解

如果只希望结果数据集的列匹配,则可以执行以下操作:

df2 = df.filter(regex='spike')
print(df2)

输出:

   spike-2  spiked-in
0        1          7
1        2          8
2        3          9

1
棒极了!不过,我仍然不太了解它是如何工作的,对于Python和Pandas来说仍然是新手。你能解释一下吗?
erikfas 2014年

16
这就是DataFrame.filterFYI的功能(如果需要,您可以提供正则表达式)
Jeff

2
@xndrme您将如何进行正则表达式以排除与正则表达式匹配的某些列而不是包含?
Dhruv Ghulati '16

3
@DhruvGhulati也可以像一样删除不需要的列df[df.columns.drop(spike_cols)],您会得到一个DataFrame列表中没有这些列的列表spike_cols,而使用不希望的正则表达式可以获取这些列。
Alvaro Fuentes

1
更简洁的代码:df[[col for col in df.columns if "spike" in col]]
WindChimes's

71

此答案使用DataFrame.filter方法执行此操作而无需列表理解:

import pandas as pd

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6]}
df = pd.DataFrame(data)

print(df.filter(like='spike').columns)

将仅输出“ spike-2”。您还可以使用正则表达式,如某些人在上面的评论中建议的那样:

print(df.filter(regex='spike|spke').columns)

将输出两列:['spike-2','hey spke']


22

您也可以使用 df.columns[df.columns.str.contains(pat = 'spike')]

data = {'spike-2': [1,2,3], 'hey spke': [4,5,6], 'spiked-in': [7,8,9], 'no': [10,11,12]}
df = pd.DataFrame(data)

colNames = df.columns[df.columns.str.contains(pat = 'spike')] 

print(colNames)

这将输出列名称: 'spike-2', 'spiked-in'

有关pandas.Series.str.contains的更多信息。




3

您还可以使用以下代码:

spike_cols =[x for x in df.columns[df.columns.str.contains('spike')]]

0

根据“开始”,“包含”和“结束”获取名称和子集:

# from: /programming/21285380/find-column-whose-name-contains-a-specific-string
# from: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html
# from: https://cmdlinetips.com/2019/04/how-to-select-columns-using-prefix-suffix-of-column-names-in-pandas/
# from: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.filter.html




import pandas as pd



data = {'spike_starts': [1,2,3], 'ends_spike_starts': [4,5,6], 'ends_spike': [7,8,9], 'not': [10,11,12]}
df = pd.DataFrame(data)



print("\n")
print("----------------------------------------")
colNames_contains = df.columns[df.columns.str.contains(pat = 'spike')].tolist() 
print("Contains")
print(colNames_contains)



print("\n")
print("----------------------------------------")
colNames_starts = df.columns[df.columns.str.contains(pat = '^spike')].tolist() 
print("Starts")
print(colNames_starts)



print("\n")
print("----------------------------------------")
colNames_ends = df.columns[df.columns.str.contains(pat = 'spike$')].tolist() 
print("Ends")
print(colNames_ends)



print("\n")
print("----------------------------------------")
df_subset_start = df.filter(regex='^spike',axis=1)
print("Starts")
print(df_subset_start)



print("\n")
print("----------------------------------------")
df_subset_contains = df.filter(regex='spike',axis=1)
print("Contains")
print(df_subset_contains)



print("\n")
print("----------------------------------------")
df_subset_ends = df.filter(regex='spike$',axis=1)
print("Ends")
print(df_subset_ends)
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.