如何计算pandas DataFrame列中的NaN值


459

我有数据,我想在其中找到数量NaN,以便如果它小于某个阈值,我将删除此列。我看了一下,但是找不到任何功能。有value_counts,但对我来说会很慢,因为大多数值是不同的,并且我只想计数NaN

Answers:


727

您可以使用该isna()方法(或者它的别名isnull()也与<0.21.0的旧版熊猫兼容),然后求和以计算NaN值。对于一列:

In [1]: s = pd.Series([1,2,3, np.nan, np.nan])

In [4]: s.isna().sum()   # or s.isnull().sum() for older pandas versions
Out[4]: 2

对于几列,它也适用:

In [5]: df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

In [6]: df.isna().sum()
Out[6]:
a    1
b    2
dtype: int64

31
而且,如果您想整体df使用df.isnull().sum().sum()
nan

2
要获取colsums,.sum(axis=0)这是默认行为。并获得rowums ,.sum(axis=1)
smci

1
@ RockJake28或df.isnull().values.sum()
cs95

3
df['column_name'].isna().sum()如果有人想知道,它也可以工作。
Superdooperhero

93

您可以从非Nan值的计数中减去总长度:

count_nan = len(df) - df.count()

您应该在数据上计时。与isnull解决方案相比,小型系列的速度提高了3倍。


4
确实,最好的时间。这取决于我认为的帧的大小,对于较大的帧(3000行),使用isnull速度已经快了两倍。
joris 2014年

5
当我为一个庞大的groupby计算组的长度时,我尝试了两种方法,组的大小通常小于4,而joris的df.isnull()。sum()至少快20倍。这是0.17.1。
内森·劳埃德

对我来说,对于7万行,两者的平均值均低于3毫秒,而na却很少。
Josiah Yoder

89

假设df是一个熊猫DataFrame。

然后,

df.isnull().sum(axis = 0)

这将在每列中提供NaN值的数量。

如果需要,可以在每行中输入NaN值,

df.isnull().sum(axis = 1)

46

根据投票最多的答案,我们可以轻松定义一个函数,该函数为我们提供一个数据框,以预览每列中的缺失值和缺失值的百分比:

def missing_values_table(df):
        mis_val = df.isnull().sum()
        mis_val_percent = 100 * df.isnull().sum() / len(df)
        mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
        mis_val_table_ren_columns = mis_val_table.rename(
        columns = {0 : 'Missing Values', 1 : '% of Total Values'})
        mis_val_table_ren_columns = mis_val_table_ren_columns[
            mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
            "There are " + str(mis_val_table_ren_columns.shape[0]) +
              " columns that have missing values.")
        return mis_val_table_ren_columns

36

从熊猫0.14.1开始,我在这里建议 value_counts方法中使用关键字参数:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64

到目前为止最好的答案,它还可以计算其他值类型。
华丽的

19

如果它只是在熊猫列中计算nan值,这是一种快速方法

import pandas as pd
## df1 as an example data frame 
## col1 name of column for which you want to calculate the nan values
sum(pd.isnull(df1['col1']))

2
sushmit,如果您有许多列,这种方法不是很快。在这种情况下,您必须复制并粘贴/键入每个列的名称,然后重新执行代码。
阿摩斯·朗

17

如果您正在使用Jupyter Notebook,如何...。

 %%timeit
 df.isnull().any().any()

要么

 %timeit 
 df.isnull().values.sum()

或者,数据中是否存在NaN,如果是,在哪里?

 df.isnull().any()

13

下面将按降序打印所有Nan列。

df.isnull().sum().sort_values(ascending = False)

要么

下面将按降序打印前15 Nan列。

df.isnull().sum().sort_values(ascending = False).head(15)

10
import numpy as np
import pandas as pd

raw_data = {'first_name': ['Jason', np.nan, 'Tina', 'Jake', 'Amy'], 
        'last_name': ['Miller', np.nan, np.nan, 'Milner', 'Cooze'], 
        'age': [22, np.nan, 23, 24, 25], 
        'sex': ['m', np.nan, 'f', 'm', 'f'], 
        'Test1_Score': [4, np.nan, 0, 0, 0],
        'Test2_Score': [25, np.nan, np.nan, 0, 0]}
results = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 'sex', 'Test1_Score', 'Test2_Score'])

results 
'''
  first_name last_name   age  sex  Test1_Score  Test2_Score
0      Jason    Miller  22.0    m          4.0         25.0
1        NaN       NaN   NaN  NaN          NaN          NaN
2       Tina       NaN  23.0    f          0.0          NaN
3       Jake    Milner  24.0    m          0.0          0.0
4        Amy     Cooze  25.0    f          0.0          0.0
'''

您可以使用以下功能,这将在Dataframe中提供输出

  • 零值
  • 缺失值
  • 占总价值的百分比
  • 总零缺失值
  • 总零缺失值百分比
  • 数据类型

只需复制并粘贴以下函数,然后通过传递您的pandas Dataframe来调用它

def missing_zero_values_table(df):
        zero_val = (df == 0.00).astype(int).sum(axis=0)
        mis_val = df.isnull().sum()
        mis_val_percent = 100 * df.isnull().sum() / len(df)
        mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1)
        mz_table = mz_table.rename(
        columns = {0 : 'Zero Values', 1 : 'Missing Values', 2 : '% of Total Values'})
        mz_table['Total Zero Missing Values'] = mz_table['Zero Values'] + mz_table['Missing Values']
        mz_table['% Total Zero Missing Values'] = 100 * mz_table['Total Zero Missing Values'] / len(df)
        mz_table['Data Type'] = df.dtypes
        mz_table = mz_table[
            mz_table.iloc[:,1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns and " + str(df.shape[0]) + " Rows.\n"      
            "There are " + str(mz_table.shape[0]) +
              " columns that have missing values.")
#         mz_table.to_excel('D:/sampledata/missing_and_zero_values.xlsx', freeze_panes=(1,0), index = False)
        return mz_table

missing_zero_values_table(results)

输出量

Your selected dataframe has 6 columns and 5 Rows.
There are 6 columns that have missing values.

             Zero Values  Missing Values  % of Total Values  Total Zero Missing Values  % Total Zero Missing Values Data Type
last_name              0               2               40.0                          2                         40.0    object
Test2_Score            2               2               40.0                          4                         80.0   float64
first_name             0               1               20.0                          1                         20.0    object
age                    0               1               20.0                          1                         20.0   float64
sex                    0               1               20.0                          1                         20.0    object
Test1_Score            3               1               20.0                          4                         80.0   float64

如果要保持简单,则可以使用以下函数获取%的缺失值

def missing(dff):
    print (round((dff.isnull().sum() * 100/ len(dff)),2).sort_values(ascending=False))


missing(results)
'''
Test2_Score    40.0
last_name      40.0
Test1_Score    20.0
sex            20.0
age            20.0
first_name     20.0
dtype: float64
'''

10

计数零:

df[df == 0].count(axis=0)

要计算NaN:

df.isnull().sum()

要么

df.isna().sum()

8

您可以使用value_counts方法并打印np.nan的值

s.value_counts(dropna = False)[np.nan]

真好!如果您要同时计算NaN和非NaN,则此功能最有用。s.value_counts(dropna = False)
icemtel



3

这是用于按Null列计算值的代码:

df.isna().sum()

3

2017年7月有一篇不错的Dzone文章,其中详细介绍了总结NaN值的各种方法。检查它在这里

我引用的文章通过以下方式提供了附加值:(1)显示一种计数和显示每一列的NaN计数的方法,以便人们可以轻松地决定是否丢弃这些列,以及(2)演示一种在其中选择那些行的方法具有NaN的特定分子,因此可以有选择地丢弃或估算它们。

这是一个演示该方法实用性的简单示例-仅用几列,也许它的用处并不明显,但我发现它对较大的数据帧有帮助。

import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# Check whether there are null values in columns
null_columns = df.columns[df.isnull().any()]
print(df[null_columns].isnull().sum())

# One can follow along further per the cited article

3

为了计算NaN,尚未建议的另一个简单选项是添加形状以返回带有NaN的行数。

df[df['col_name'].isnull()]['col_name'].shape

2

df.isnull()。sum()将给出缺失值的列式总和。

如果您想知道特定列中缺失值的总和,则可以使用以下代码df.column.isnull()。sum()


1

根据给出的答案和一些改进,这是我的方法

def PercentageMissin(Dataset):
    """this function will return the percentage of missing values in a dataset """
    if isinstance(Dataset,pd.DataFrame):
        adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
        for col in Dataset.columns:
            adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
        return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
    else:
        raise TypeError("can only be used with panda dataframe")

我更喜欢df.apply(lambda x: x.value_counts(dropna=False)[np.nan]/x.size*100)
K.-Michael Aye

1

如果您需要获取groupby提取的不同组之间的非NA(non-None)和NA(None)计数:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回非NA,NA的计数以及每个组的条目总数。


0

在我的代码中使用了@sushmit提出的解决方案。

相同的可能变体也可以是

colNullCnt = []
for z in range(len(df1.cols)):
    colNullCnt.append([df1.cols[z], sum(pd.isnull(trainPd[df1.cols[z]]))])

这样做的好处是,此后它将返回df中每个列的结果。


0
import pandas as pd
import numpy as np

# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})

# count the NaNs in a column
num_nan_a = df.loc[ (pd.isna(df['a'])) , 'a' ].shape[0]
num_nan_b = df.loc[ (pd.isna(df['b'])) , 'b' ].shape[0]

# summarize the num_nan_b
print(df)
print(' ')
print(f"There are {num_nan_a} NaNs in column a")
print(f"There are {num_nan_b} NaNs in column b")

给出作为输出:

     a    b
0  1.0  NaN
1  2.0  1.0
2  NaN  NaN

There are 1 NaNs in column a
There are 2 NaNs in column b

0

假设您要在称为评论的数据框中获取称为价格的列(系列)中的缺失值(NaN)数

#import the dataframe
import pandas as pd

reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)

要获取缺失值,以n_missing_prices作为变量,只需执行

n_missing_prices = sum(reviews.price.isnull())
print(n_missing_prices)

sum是这里的关键方法,在我意识到sum是在这种情况下使用的正确方法之前,我曾尝试使用count



-1

对于您的任务,您可以使用pandas.DataFrame.dropna(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html):

import pandas as pd
import numpy as np

df = pd.DataFrame({'a': [1, 2, 3, 4, np.nan],
                   'b': [1, 2, np.nan, 4, np.nan],
                   'c': [np.nan, 2, np.nan, 4, np.nan]})
df = df.dropna(axis='columns', thresh=3)

print(df)

您可以使用thresh thresh参数为DataFrame中的所有列声明NaN值的最大计数。

代码输出:

     a    b
0  1.0  1.0
1  2.0  2.0
2  3.0  NaN
3  4.0  4.0
4  NaN  NaN
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.