对于我的使用(具有xy位置的节点名称),我发现@ user4179775对最有用/最直观的答案:
import pandas as pd
df = pd.read_csv('glycolysis_nodes_xy.tsv', sep='\t')
df.head()
nodes x y
0 c00033 146 958
1 c00031 601 195
...
xy_dict_list=dict([(i,[a,b]) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_list
{'c00022': [483, 868],
'c00024': [146, 868],
... }
xy_dict_tuples=dict([(i,(a,b)) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_tuples
{'c00022': (483, 868),
'c00024': (146, 868),
... }
附录
后来,我又回到了这个问题,进行其他但相关的工作。这是一种更接近于[优秀]公认答案的方法。
node_df = pd.read_csv('node_prop-glycolysis_tca-from_pg.tsv', sep='\t')
node_df.head()
node kegg_id kegg_cid name wt vis
0 22 22 c00022 pyruvate 1 1
1 24 24 c00024 acetyl-CoA 1 1
...
将Pandas数据帧转换为[列表],{dict},{dict的{dict}},...
每个接受的答案:
node_df.set_index('kegg_cid').T.to_dict('list')
{'c00022': [22, 22, 'pyruvate', 1, 1],
'c00024': [24, 24, 'acetyl-CoA', 1, 1],
... }
node_df.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'kegg_id': 22, 'name': 'pyruvate', 'node': 22, 'vis': 1, 'wt': 1},
'c00024': {'kegg_id': 24, 'name': 'acetyl-CoA', 'node': 24, 'vis': 1, 'wt': 1},
... }
就我而言,我想做同样的事情,但要选择Pandas数据框中的列,因此我需要对列进行切片。有两种方法。
- 直:
(请参阅:将大熊猫转换为字典,以定义用于键值的列)
node_df.set_index('kegg_cid')[['name', 'wt', 'vis']].T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
- “间接:”首先,从Pandas数据框中切片所需的列/数据(同样,两种方法),
node_df_sliced = node_df[['kegg_cid', 'name', 'wt', 'vis']]
要么
node_df_sliced2 = node_df.loc[:, ['kegg_cid', 'name', 'wt', 'vis']]
然后可以用来创建字典的字典
node_df_sliced.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
Dataframe.to_dict()
?