当它们具有不同的列集时,按行(rbind)组合两个数据帧


232

是否可以行绑定两个没有相同列集的数据帧?我希望在绑定后保留不匹配的列。

Answers:



124

最近的解决方案是使用dplyrbind_rows功能,我认为它比的效率更高smartbind

df1 <- data.frame(a = c(1:5), b = c(6:10))
df2 <- data.frame(a = c(11:15), b = c(16:20), c = LETTERS[1:5])
dplyr::bind_rows(df1, df2)
    a  b    c
1   1  6 <NA>
2   2  7 <NA>
3   3  8 <NA>
4   4  9 <NA>
5   5 10 <NA>
6  11 16    A
7  12 17    B
8  13 18    C
9  14 19    D
10 15 20    E

我正在尝试将大量具有不同列名的数据框(16)组合在一起时,出现错误消息:ABC无法将列从字符转换为数字。有没有办法先转换列?
sar

46

您可以smartbindgtools包装中使用。

例:

library(gtools)
df1 <- data.frame(a = c(1:5), b = c(6:10))
df2 <- data.frame(a = c(11:15), b = c(16:20), c = LETTERS[1:5])
smartbind(df1, df2)
# result
     a  b    c
1.1  1  6 <NA>
1.2  2  7 <NA>
1.3  3  8 <NA>
1.4  4  9 <NA>
1.5  5 10 <NA>
2.1 11 16    A
2.2 12 17    B
2.3 13 18    C
2.4 14 19    D
2.5 15 20    E

3
我尝试smartbind使用两个大数据帧(总共大约3 * 10 ^ 6行),并在10分钟后中止了它。

2
9年中发生了很多事情:)我今天可能不会使用smartbind。还请注意,原始问题未指定大数据帧。
neilfws


37

另一种选择data.table

library(data.table)
df1 = data.frame(a = c(1:5), b = c(6:10))
df2 = data.frame(a = c(11:15), b = c(16:20), c = LETTERS[1:5])
rbindlist(list(df1, df2), fill = TRUE)

rbinddata.table只要将对象转换为data.table对象,它也将起作用

rbind(setDT(df1), setDT(df2), fill=TRUE)

在这种情况下也将起作用。当您有几个data.tables并且不想构造一个列表时,这可能是更可取的。


这是最简单,开箱即用的解决方案,可以轻松地推广到任意数量的数据框,因为您可以将它们全部存储在单独的列表元素中。其他答案(如intersect方法)仅适用于2个数据帧,并且难以轻易概括。
Rich Pauloo

35

大多数基本R答案都解决了仅一个data.frame具有附加列或结果data.frame具有列相交的情况。由于OP写的是我希望保留bind之后不匹配的列,因此使用基数R方法解决此问题的答案可能值得发布。

下面,我介绍两种基本的R方法:一种更改原始data.frames,另一种不更改。另外,我提供了一种将无损方法推广到两个以上data.frames的方法。

首先,让我们获取一些样本数据。

# sample data, variable c is in df1, variable d is in df2
df1 = data.frame(a=1:5, b=6:10, d=month.name[1:5])
df2 = data.frame(a=6:10, b=16:20, c = letters[8:12])

两个data.frame,更改原件
为了保留两个data.frame中的所有列rbind(并允许该函数正常工作而不会导致错误),您将NA列添加到每个data.frame中,并填写了适当的缺失名称使用setdiff

# fill in non-overlapping columns with NAs
df1[setdiff(names(df2), names(df1))] <- NA
df2[setdiff(names(df1), names(df2))] <- NA

现在,rbind-em

rbind(df1, df2)
    a  b        d    c
1   1  6  January <NA>
2   2  7 February <NA>
3   3  8    March <NA>
4   4  9    April <NA>
5   5 10      May <NA>
6   6 16     <NA>    h
7   7 17     <NA>    i
8   8 18     <NA>    j
9   9 19     <NA>    k
10 10 20     <NA>    l

请注意,前两行更改了原始data.frames,df1和df2,并向两者都添加了完整的列集。


两个data.frame,请勿更改原始数据
若要保留原始data.frames的完整性,请首先遍历不同的名称,然后使用来返回NA的命名向量,这些向量将与data.frame串联在一起c。然后,data.frame将结果转换为的适当data.frame rbind

rbind(
  data.frame(c(df1, sapply(setdiff(names(df2), names(df1)), function(x) NA))),
  data.frame(c(df2, sapply(setdiff(names(df1), names(df2)), function(x) NA)))
)

许多data.frame,请勿更改原始数据
如果您有两个以上data.frame,可以执行以下操作。

# put data.frames into list (dfs named df1, df2, df3, etc)
mydflist <- mget(ls(pattern="df\\d+"))
# get all variable names
allNms <- unique(unlist(lapply(mydflist, names)))

# put em all together
do.call(rbind,
        lapply(mydflist,
               function(x) data.frame(c(x, sapply(setdiff(allNms, names(x)),
                                                  function(y) NA)))))

也许看不到原始data.frames的行名更好一点?然后做这个。

do.call(rbind,
        c(lapply(mydflist,
                 function(x) data.frame(c(x, sapply(setdiff(allNms, names(x)),
                                                    function(y) NA)))),
          make.row.names=FALSE))

我有16个数据框,其中一些具有不同的列(每列中总共约70-90个列)。尝试此操作时,我陷入了第一个命令<-mget(ls(pattern =“ df \\ d +”))。我的数据框具有不同的名称。我尝试使用mydflist <-c(as,dr,kr,hyt,ed1,of)来创建列表,但这给了我巨大的列表。
sar

只需链接到@GKi
sar

1
@sar使用mydflist <- list(as, dr, kr, hyt, ed1, of)。这应该构造一个列表对象,该对象不会增加环境的大小,而只是指向列表的每个元素(只要您以后不更改任何内容)。操作后,为了安全起见,请删除列表对象。
lmo

20

您也可以只提取公共列名称。

> cols <- intersect(colnames(df1), colnames(df2))
> rbind(df1[,cols], df2[,cols])

6

我编写了一个函数来执行此操作,因为我喜欢用代码告诉我是否出了问题。此函数将明确告诉您哪些列名不匹配以及类型是否不匹配。然后,它将尽最大努力将data.frames组合在一起。限制是您一次只能合并两个data.frame。

### combines data frames (like rbind) but by matching column names
# columns without matches in the other data frame are still combined
# but with NA in the rows corresponding to the data frame without
# the variable
# A warning is issued if there is a type mismatch between columns of
# the same name and an attempt is made to combine the columns
combineByName <- function(A,B) {
    a.names <- names(A)
    b.names <- names(B)
    all.names <- union(a.names,b.names)
    print(paste("Number of columns:",length(all.names)))
    a.type <- NULL
    for (i in 1:ncol(A)) {
        a.type[i] <- typeof(A[,i])
    }
    b.type <- NULL
    for (i in 1:ncol(B)) {
        b.type[i] <- typeof(B[,i])
    }
    a_b.names <- names(A)[!names(A)%in%names(B)]
    b_a.names <- names(B)[!names(B)%in%names(A)]
    if (length(a_b.names)>0 | length(b_a.names)>0){
        print("Columns in data frame A but not in data frame B:")
        print(a_b.names)
        print("Columns in data frame B but not in data frame A:")
        print(b_a.names)
    } else if(a.names==b.names & a.type==b.type){
        C <- rbind(A,B)
        return(C)
    }
    C <- list()
    for(i in 1:length(all.names)) {
        l.a <- all.names[i]%in%a.names
        pos.a <- match(all.names[i],a.names)
        typ.a <- a.type[pos.a]
        l.b <- all.names[i]%in%b.names
        pos.b <- match(all.names[i],b.names)
        typ.b <- b.type[pos.b]
        if(l.a & l.b) {
            if(typ.a==typ.b) {
                vec <- c(A[,pos.a],B[,pos.b])
            } else {
                warning(c("Type mismatch in variable named: ",all.names[i],"\n"))
                vec <- try(c(A[,pos.a],B[,pos.b]))
            }
        } else if (l.a) {
            vec <- c(A[,pos.a],rep(NA,nrow(B)))
        } else {
            vec <- c(rep(NA,nrow(A)),B[,pos.b])
        }
        C[[i]] <- vec
    }
    names(C) <- all.names
    C <- as.data.frame(C)
    return(C)
}


2

gtools / smartbind不喜欢使用Dates,可能是因为它是as.vectoring。所以这是我的解决方案...

sbind = function(x, y, fill=NA) {
    sbind.fill = function(d, cols){ 
        for(c in cols)
            d[[c]] = fill
        d
    }

    x = sbind.fill(x, setdiff(names(y),names(x)))
    y = sbind.fill(y, setdiff(names(x),names(y)))

    rbind(x, y)
}

使用dplyr :: bind_rows(x,y)代替rbind(x,y)可使列顺序基于第一个数据帧。
拉农·卡恩(RanonKahn),

2

仅用于文档。您可以按照以下形式尝试该Stack库及其功能Stack

Stack(df_1, df_2)

我也有印象,对于大型数据集,它比其他方法要快。


1

您也可以使用sjmisc::add_rows(),它使用dplyr::bind_rows()(但与众不同bind_rows()add_rows()保留属性,因此对于标记的数据很有用。

请参阅以下带有标记数据集的示例。所述frq()-function打印频率表与值标签,如果所述数据被标记。

library(sjmisc)
library(dplyr)

data(efc)
# select two subsets, with some identical and else different columns
x1 <- efc %>% select(1:5) %>% slice(1:10)
x2 <- efc %>% select(3:7) %>% slice(11:20)

str(x1)
#> 'data.frame':    10 obs. of  5 variables:
#>  $ c12hour : num  16 148 70 168 168 16 161 110 28 40
#>   ..- attr(*, "label")= chr "average number of hours of care per week"
#>  $ e15relat: num  2 2 1 1 2 2 1 4 2 2
#>   ..- attr(*, "label")= chr "relationship to elder"
#>   ..- attr(*, "labels")= Named num  1 2 3 4 5 6 7 8
#>   .. ..- attr(*, "names")= chr  "spouse/partner" "child" "sibling" "daughter or son -in-law" ...
#>  $ e16sex  : num  2 2 2 2 2 2 1 2 2 2
#>   ..- attr(*, "label")= chr "elder's gender"
#>   ..- attr(*, "labels")= Named num  1 2
#>   .. ..- attr(*, "names")= chr  "male" "female"
#>  $ e17age  : num  83 88 82 67 84 85 74 87 79 83
#>   ..- attr(*, "label")= chr "elder' age"
#>  $ e42dep  : num  3 3 3 4 4 4 4 4 4 4
#>   ..- attr(*, "label")= chr "elder's dependency"
#>   ..- attr(*, "labels")= Named num  1 2 3 4
#>   .. ..- attr(*, "names")= chr  "independent" "slightly dependent" "moderately dependent" "severely dependent"

bind_rows(x1, x1) %>% frq(e42dep)
#> 
#> # e42dep <numeric> 
#> # total N=20  valid N=20  mean=3.70  sd=0.47
#>  
#>   val frq raw.prc valid.prc cum.prc
#>     3   6      30        30      30
#>     4  14      70        70     100
#>  <NA>   0       0        NA      NA

add_rows(x1, x1) %>% frq(e42dep)
#> 
#> # elder's dependency (e42dep) <numeric> 
#> # total N=20  valid N=20  mean=3.70  sd=0.47
#>  
#>  val                label frq raw.prc valid.prc cum.prc
#>    1          independent   0       0         0       0
#>    2   slightly dependent   0       0         0       0
#>    3 moderately dependent   6      30        30      30
#>    4   severely dependent  14      70        70     100
#>   NA                   NA   0       0        NA      NA

-1
rbind.ordered=function(x,y){

  diffCol = setdiff(colnames(x),colnames(y))
  if (length(diffCol)>0){
    cols=colnames(y)
    for (i in 1:length(diffCol)) y=cbind(y,NA)
    colnames(y)=c(cols,diffCol)
  }

  diffCol = setdiff(colnames(y),colnames(x))
  if (length(diffCol)>0){
    cols=colnames(x)
    for (i in 1:length(diffCol)) x=cbind(x,NA)
    colnames(x)=c(cols,diffCol)
  }
  return(rbind(x, y[, colnames(x)]))
}
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.