Answers:
你可以做
[n.name for n in tf.get_default_graph().as_graph_def().node]
另外,如果要在IPython笔记本中进行原型制作,则可以直接在笔记本中显示图形,请参见show_graph
Alexander's Deep Dream 笔记本中的功能
有一种方法可以通过使用get_operations来比Yaroslav的回答中稍快一些。这是一个简单的示例:
import tensorflow as tf
a = tf.constant(1.3, name='const_a')
b = tf.Variable(3.1, name='variable_b')
c = tf.add(a, b, name='addition')
d = tf.multiply(c, a, name='multiply')
for op in tf.get_default_graph().get_operations():
print(str(op.name))
tf.get_operations()
。只有您可以获得的操作。
我将尝试总结答案:
要获取所有节点(类型tensorflow.core.framework.node_def_pb2.NodeDef
):
all_nodes = [n for n in tf.get_default_graph().as_graph_def().node]
要获取所有操作(类型tensorflow.python.framework.ops.Operation
):
all_ops = tf.get_default_graph().get_operations()
要获取所有变量(类型tensorflow.python.ops.resource_variable_ops.ResourceVariable
):
all_vars = tf.global_variables()
获取所有张量(类型tensorflow.python.framework.ops.Tensor
):
all_tensors = [tensor for op in tf.get_default_graph().get_operations() for tensor in op.values()]
tf.all_variables()
可以为您获取所需的信息。
此外,今天在TensorFlow Learn中所做的提交get_variable_names
在estimator中提供了一个函数,您可以使用该函数轻松检索所有变量名称。
tf.global_variables()
all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02
我认为这样做也可以:
print(tf.contrib.graph_editor.get_tensors(tf.get_default_graph()))
但是,与萨尔瓦多和雅罗斯拉夫的答案相比,我不知道哪个更好。
接受的答案仅会为您提供带有名称的字符串列表。我更喜欢另一种方法,它使您(几乎)直接访问张量:
graph = tf.get_default_graph()
list_of_tuples = [op.values() for op in graph.get_operations()]
list_of_tuples
现在包含每个张量,每个张量都在一个元组中。您还可以对其进行调整以直接获得张量:
graph = tf.get_default_graph()
list_of_tuples = [op.values()[0] for op in graph.get_operations()]
先前的答案很好,我只想分享我编写的从图中选择张量的实用函数:
def get_graph_op(graph, and_conds=None, op='and', or_conds=None):
"""Selects nodes' names in the graph if:
- The name contains all items in and_conds
- OR/AND depending on op
- The name contains any item in or_conds
Condition starting with a "!" are negated.
Returns all ops if no optional arguments is given.
Args:
graph (tf.Graph): The graph containing sought tensors
and_conds (list(str)), optional): Defaults to None.
"and" conditions
op (str, optional): Defaults to 'and'.
How to link the and_conds and or_conds:
with an 'and' or an 'or'
or_conds (list(str), optional): Defaults to None.
"or conditions"
Returns:
list(str): list of relevant tensor names
"""
assert op in {'and', 'or'}
if and_conds is None:
and_conds = ['']
if or_conds is None:
or_conds = ['']
node_names = [n.name for n in graph.as_graph_def().node]
ands = {
n for n in node_names
if all(
cond in n if '!' not in cond
else cond[1:] not in n
for cond in and_conds
)}
ors = {
n for n in node_names
if any(
cond in n if '!' not in cond
else cond[1:] not in n
for cond in or_conds
)}
if op == 'and':
return [
n for n in node_names
if n in ands.intersection(ors)
]
elif op == 'or':
return [
n for n in node_names
if n in ands.union(ors)
]
因此,如果您有带有操作图的图形:
['model/classifier/dense/kernel',
'model/classifier/dense/kernel/Assign',
'model/classifier/dense/kernel/read',
'model/classifier/dense/bias',
'model/classifier/dense/bias/Assign',
'model/classifier/dense/bias/read',
'model/classifier/dense/MatMul',
'model/classifier/dense/BiasAdd',
'model/classifier/ArgMax/dimension',
'model/classifier/ArgMax']
然后跑步
get_graph_op(tf.get_default_graph(), ['dense', '!kernel'], 'or', ['Assign'])
返回:
['model/classifier/dense/kernel/Assign',
'model/classifier/dense/bias',
'model/classifier/dense/bias/Assign',
'model/classifier/dense/bias/read',
'model/classifier/dense/MatMul',
'model/classifier/dense/BiasAdd']
这对我有用:
for n in tf.get_default_graph().as_graph_def().node:
print('\n',n)
if "Variable" in n.op
在理解的末尾添加来过滤例如变量。