问题陈述
我正在寻找一种有效的方法来生成完全二进制的笛卡尔乘积(具有某些列的True和False的所有组合的表),并按某些排他条件过滤。例如,对于三列/位,n=3
我们将获得完整表
df_combs = pd.DataFrame(itertools.product(*([[True, False]] * n)))
0 1 2
0 True True True
1 True True False
2 True False True
3 True False False
...
应该由字典定义互斥组合来过滤此内容,如下所示:
mutually_excl = [{0: False, 1: False, 2: True},
{0: True, 2: True}]
键在其中表示上表中的列。该示例将读取为:
- 如果0为False而1为False,则2不能为True
- 如果0为True,则2不能为True
基于这些过滤器,预期输出为:
0 1 2
1 True True False
3 True False False
4 False True True
5 False True False
7 False False False
在我的用例中,过滤后的表格比完整的笛卡尔积小几个数量级(例如,约1000而不是2**24 (16777216)
)。
下面是我目前的三个解决方案,每个解决方案各有优缺点,最后进行了讨论。
import random
import pandas as pd
import itertools
import wrapt
import time
import operator
import functools
def get_mutually_excl(n, nfilt): # generate random example filter
''' Example: `get_mutually_excl(9, 2)` creates a list of two filters with
maximum index `n=9` and each filter length between 2 and `int(n/3)`:
`[{1: True, 2: False}, {3: False, 2: True, 6: False}]` '''
random.seed(2)
return [{random.choice(range(n)): random.choice([True, False])
for _ in range(random.randint(2, int(n/3)))}
for _ in range(nfilt)]
@wrapt.decorator
def timediff(f, _, args, kwargs):
t = time.perf_counter()
res = f(*args)
return res, time.perf_counter() - t
解决方案1:先过滤,然后合并。
将每个单个过滤器条目(例如{0: True, 2: True}
)扩展到一个子表,该表的列与该过滤器条目([0, 2]
)中的索引相对应。从此子表([True, True]
)中删除单个已过滤的行。与完整表合并以获取过滤组合的完整列表。
@timediff
def make_df_comb_filt_merge(n, nfilt):
mutually_excl = get_mutually_excl(n, nfilt)
# determine missing (unfiltered) columns
cols_missing = set(range(n)) - set(itertools.chain.from_iterable(mutually_excl))
# complete dataframe of unfiltered columns with column "temp" for full outer merge
df_comb = pd.DataFrame(itertools.product(*([[True, False]] * len(cols_missing))),
columns=cols_missing).assign(temp=1)
for filt in mutually_excl: # loop through individual filters
# get columns and bool values of this filters as two tuples with same order
list_col, list_bool = zip(*filt.items())
# construct dataframe
df = pd.DataFrame(itertools.product(*([[True, False]] * len(list_col))),
columns=list_col)
# filter remove a *single* row (by definition)
df = df.loc[df.apply(tuple, axis=1) != list_bool]
# determine which rows to merge on
merge_cols = list(set(df.columns) & set(df_comb.columns))
if not merge_cols:
merge_cols = ['temp']
df['temp'] = 1
# merge with full dataframe
df_comb = pd.merge(df_comb, df, on=merge_cols)
df_comb.drop('temp', axis=1, inplace=True)
df_comb = df_comb[range(n)]
df_comb = df_comb.sort_values(df_comb.columns.tolist(), ascending=False)
return df_comb.reset_index(drop=True)
解决方案2:完全展开,然后过滤
为完整的笛卡尔积生成DataFrame:整个事情最终在内存中结束。遍历过滤器并为每个过滤器创建一个遮罩。将每个面膜涂在桌子上。
@timediff
def make_df_comb_exp_filt(n, nfilt):
mutually_excl = get_mutually_excl(n, nfilt)
# expand all bool combinations into dataframe
df_comb = pd.DataFrame(itertools.product(*([[True, False]] * n)),
dtype=bool)
for filt in mutually_excl:
# generate total filter mask for given excluded combination
mask = pd.Series(True, index=df_comb.index)
for col, bool_act in filt.items():
mask = mask & (df_comb[col] == bool_act)
# filter dataframe
df_comb = df_comb.loc[~mask]
return df_comb.reset_index(drop=True)
解决方案3:筛选器迭代器
保持完整的笛卡尔积为迭代器。循环检查每行是否被任何过滤器排除。
@timediff
def make_df_iter_filt(n, nfilt):
mutually_excl = get_mutually_excl(n, nfilt)
# switch to [[(1, 13), (True, False)], [(4, 9), (False, True)], ...]
mutually_excl_index = [list(zip(*comb.items()))
for comb in mutually_excl]
# create iterator
combs_iter = itertools.product(*([[True, False]] * n))
@functools.lru_cache(maxsize=1024, typed=True) # small benefit
def get_getter(list_):
# Used to access combs_iter row values as indexed by the filter
return operator.itemgetter(*list_)
def check_comb(comb_inp, comb_check):
return get_getter(comb_check[0])(comb_inp) == comb_check[1]
# loop through the iterator
# drop row if any of the filter matches
df_comb = pd.DataFrame([comb_inp for comb_inp in combs_iter
if not any(check_comb(comb_inp, comb_check)
for comb_check in mutually_excl_index)])
return df_comb.reset_index(drop=True)
运行示例
dict_time = dict.fromkeys(itertools.product(range(16, 23, 2), range(3, 20)))
for n, nfilt in dict_time:
dict_time[(n, nfilt)] = {'exp_filt': make_df_comb_exp_filt(n, nfilt)[1],
'filt_merge': make_df_comb_filt_merge(n, nfilt)[1],
'iter_filt': make_df_iter_filt(n, nfilt)[1]}
分析
import seaborn as sns
import matplotlib.pyplot as plt
df_time = pd.DataFrame.from_dict(dict_time, orient='index',
).rename_axis(["n", "nfilt"]
).stack().reset_index().rename(columns={'level_2': 'solution', 0: 'time'})
g = sns.FacetGrid(df_time.query('n in %s' % str([16,18,20,22])),
col="n", hue="solution", sharey=False)
g = (g.map(plt.plot, "nfilt", "time", marker="o").add_legend())
解决方案3:基于迭代器的方法(comb_iterator
)的运行时间令人沮丧,但没有大量使用内存。我认为仍有改进的空间,尽管不可避免的循环可能会在运行时间方面施加硬性限制。
解决方案2:将整个笛卡尔积扩展为DataFrame(exp_filt
)会导致内存出现明显的峰值,我想避免这种情况。运行时间还可以。
解决方案1:合并由单个过滤器(filt_merge
)创建的DataFrame 对于我的实际应用来说是一个很好的解决方案(请注意,使用较小的过滤器会减少运行时间,这是cols_missing
表较小的结果)。尽管如此,这种方法仍不能完全令人满意:如果单个过滤器包含所有列,则整个笛卡尔积(2**n
)最终将存储在内存中,从而使该解决方案比差comb_iterator
。
问题:还有其他想法吗?疯狂的聪明的麻木两线?基于迭代器的方法能否有所改进?