我无法spark在Scala IDE安装在(Maven Spark项目)中的简单作业上Windows 7 Spark核心依赖已被添加。 val conf = new SparkConf().setAppName("DemoDF").setMaster("local") val sc = new SparkContext(conf) val logData = sc.textFile("File.txt") logData.count() 错误: 16/02/26 18:29:33 INFO SparkContext: Created broadcast 0 from textFile at FrameDemo.scala:13 16/02/26 18:29:34 ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not …
我试图在Mac OS Yosemite 10.10.5上使用以下命令启动spark 1.6.0(spark-1.6.0-bin-hadoop2.4) "./bin/spark-shell". 它具有以下错误。我也尝试安装不同版本的Spark,但是所有版本都有相同的错误。这是我第二次运行Spark。我以前的运行正常。 log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory). log4j:WARN Please initialize the log4j system properly. log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. Using Spark's repl log4j profile: org/apache/spark/log4j-defaults-repl.properties To adjust logging level use sc.setLogLevel("INFO") Welcome to ____ __ / __/__ ___ _____/ /__ …
我使用的是spark 1.4.0-rc2,因此可以将Python 3与spark一起使用。如果添加export PYSPARK_PYTHON=python3到.bashrc文件,则可以与python 3交互运行spark。但是,如果要在本地模式下运行独立程序,则会收到错误消息: Exception: Python in worker has different version 3.4 than that in driver 2.7, PySpark cannot run with different minor versions 如何为驱动程序指定python版本?设置export PYSPARK_DRIVER_PYTHON=python3无效。
我正在以推测模式运行Spark作业。我有大约500个任务和大约500个1 GB gz压缩文件。我会继续处理每一项工作,执行1-2个任务,然后再执行数十次附加错误(阻止该工作完成)。 org.apache.spark.shuffle.MetadataFetchFailedException:缺少shuffle 0的输出位置 知道这个问题的含义是什么,如何解决? org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 0 at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$1.apply(MapOutputTracker.scala:384) at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$1.apply(MapOutputTracker.scala:381) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108) at org.apache.spark.MapOutputTracker$.org$apache$spark$MapOutputTracker$$convertMapStatuses(MapOutputTracker.scala:380) at org.apache.spark.MapOutputTracker.getServerStatuses(MapOutputTracker.scala:176) at org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$.fetch(BlockStoreShuffleFetcher.scala:42) at org.apache.spark.shuffle.hash.HashShuffleReader.read(HashShuffleReader.scala:40) at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:92) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263) at org.apache.spark.rdd.RDD.iterator(RDD.scala:230) …
我阅读了有关的文档HashPartitioner。不幸的是,除了API调用外,没有太多解释。我假设HashPartitioner基于键的哈希对分布式集进行分区。例如,如果我的数据是 (1,1), (1,2), (1,3), (2,1), (2,2), (2,3) 因此,分区程序会将其放入不同的分区中,而相同的密钥位于同一分区中。但是我不明白构造函数参数的重要性 new HashPartitoner(numPartitions) //What does numPartitions do? 对于上述数据集,如果我这样做,结果将如何不同 new HashPartitoner(1) new HashPartitoner(2) new HashPartitoner(10) 那么HashPartitioner实际上如何工作?