1
Holevo信息不等式的证明
假设我有一个经典-经典-量子通道 W:X×Y→D(H)W:X×Y→D(H)W : \mathcal{X}\times\mathcal{Y} \rightarrow \mathcal{D}(\mathcal{H}),在哪里 X,YX,Y\mathcal{X},\mathcal{Y}是有限集,是有限维复杂希尔伯特空间上的密度矩阵集。D(H)D(H)\mathcal{D}(\mathcal{H})HH\mathcal{H} 假设是上的均匀分布,并且pxpxp_xXX\mathcal{X}pypyp_y 是均匀分布在 YY\mathcal{Y}。此外,定义分布p1p1p_1 上 XX\mathcal{X} 和 p2p2p_2 上 YY\mathcal{Y},Holevo信息 χ(p1,p2,W):=H(∑x,yp1(x)p2(y)W(x,y))−∑x,yp1(x)p2(y)H(W(x,y))χ(p1,p2,W):=H(∑x,yp1(x)p2(y)W(x,y))−∑x,yp1(x)p2(y)H(W(x,y))\chi(p_1, p_2, W) := H\left(\sum_{x,y}p_1(x)p_2(y)W(x,y)\right) - \sum_{x,y}p_1(x)p_2(y)H(W(x,y)) 哪里 HHH 是冯·诺依曼熵 我想展示一下 p1:=supp{χ(p,py,W)},p2:=supp{χ(px,p,W)}p1:=supp{χ(p,py,W)},p2:=supp{χ(px,p,W)} p_1 := \sup_{p}\left\{ \chi(p, p_y, W)\right\}, p_2 := \sup_{p}\left\{ \chi(p_x, p, W)\right\} 那, χ (p1个,p2,W)≥ χ (p1个,pÿ,W) and χ(p1,p2,W)≥χ(px,p2,W).χ(p1,p2,W)≥χ(p1,py,W) and χ(p1,p2,W)≥χ(px,p2,W).\chi(p_1, p_2, …