控制系统设计中的“水床效应”是什么?


10

我最近偶然发现A. Megretski在MIT上有关“多变量控制系统”课程的一些笔记中有关“水床效应”的一些笔记。摘录:

通常会与开环设备的不稳定零点和极点相关联的常见效应,使得理论上不可能在所有频率上同时使某些闭环传递函数“小”:如果在一部分频谱中频率响应的幅度减小了,其他部分可能会变得更大。这种效应有时称为水床效应,可以用施加在闭环传递函数上的积分不等式进行数学解释。在这种结果的基础上,是所有可能的闭环响应的仿射特性,以及解析函数的柯西积分关系。

我想我以前从未听说过。有人可以更实际地解释这种影响吗?在实践中我何时可能会遇到这种影响?

Answers:


1

如果我理解本文,如果我错了,请纠正我:

A common effect, usually associated with unstable zeroes and poles of the open
loop plant, makes it theoretically impossible to make certain closed loop transfer 
functions “small” simultaneously at all frequencies:

这是关于可实现控制系统中的零极点取消。实质上:

1sα

对于阶跃响应不稳定,但是:

sα1sα2=1
,其中
α1=α2

稳定;但是,由于参数变化(电阻/电容容差),不可能消除不稳定的极点。alpha_1和alpha_2可能永远无法完美对齐以相互抵消。(也许通过数字控件)

if amplitude of the frequency 
response is reduced in one part of the spectrum, it may have to get larger in the other 
part. This effect, sometimes called the waterbed effect, can be explained mathematically
 in terms of integral inequalities imposed on the closed loop transfer functions. 

基本上,如果alpha_1增加,则此“水床效应”是由于alpha_2向下拖拉频率响应的时间更长,因为alpha_1零插入。

如果不匹配,则频率响应基本上是这样的:

--------\
         \
          \-------------

当它们完全匹配时,则如下所示:

----------------------------------

(也就是说,反应平平)

如果发生相反的情况(将alpha_2变大,您应该会看到此响应的相反效果)

             -----------------
             /
            /
      -----/

In the basis of such results is the affine characterization of all possible 
closed loop responses, as well as the Cauchy integral relation for analytical     
functions.

通过回答文件:

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.