白噪声不应该具有平坦的幅度响应吗?(所有频率相等)
的预期白噪声的幅度响应是平坦的(这就是JasonR调用功率谱密度)。白噪声序列的任何特定实例都不会具有精确的平坦响应(这就是JasonR的评论所称的功率谱)。
实际上,白噪声的傅立叶变换就是...白噪声!
标准偏差(在我的示例中为1)与幅度和相位之间是什么关系?
标准偏差和相位之间没有关系。至于幅度,假设n (吨)是平稳的白噪声,均值为零,标准差为σ。那么自相关(协方差)为:
Rnn(τ)=E[n(t)n(t+τ)]=σ2δ(τ)
这样的功率谱密度是只是σ2(尽管离散时间,将有基于该信号的持续时间的比例)。
来自评论的问题:
- 当您说傅立叶变换也是白噪声时,当变换复杂时如何测量std-dev?真实的,虚构的部分还是某种组合?
假设我们的噪声是离散时间和是n [ m](零均值高斯白噪声方差σ2)。然后,转换为:
N[ k ]==∑m = 0中号− 1n [ m ] e− j 2π米ķ /中号∑m = 0中号− 1n [ 米]cos(2π米ķ /M)+ j n [ m ]sin(2π米ķ /M)
预期值为:
Ë[ N[ ķ ] ]===Ë[∑m =0中号− 1n [ 米] e- Ĵ 2 π米ķ /中号]∑m = 0中号− 1Ë[ n [ m ] ] e− j 2 π米ķ /中号0
实部的方差由下式给出:
Ë[(R N[ k ] )2]======Ë[ ∑m = 0中号− 1n [ m ] cos(2 π米ķ /中号)·&Σp = 0中号− 1n [ p ] cos(2 πp ķ /中号)]Ë[ ∑m = 0中号− 1∑p = 0中号− 1n [ m ] n [ p ] δ[ n - p ] cos(2 π米ķ /中号)cos(2 πp ķ /中号)]∑m = 0中号− 1Ë[ n [ m ]2] cos2(2 π米ķ /中号)σ2∑m = 0中号− 1cos2(2 π米ķ /中号)σ2(M2+cos(M+1)2πk/Msin(2πMk/M)2sin(2πk/M) )σ2M2
I believe the imaginary part will behave the same way.
- Could you please enlighten me how the duration of the signal relates
to the power spectral density (for discrete time situations)
I believe that (based on the above derivation), the power spectral density (the expected value of the square of the DFT) will scale linearly as the duration.
- If the phase is not affected by the std-dev, what determines the 3 degree amplitude, and the type of distribution (seems to be uniform rather than normal)
请查看此PDF文件第2页上的表。它表示,随您的陈述,系数的自变量(相位)将均匀分布。下表的屏幕截图。