我正在上拟合回归。通过求幂来支持变换点估计(以及置信度/预测间隔)是否有效?我不这么认为,因为但想要别人的意见。E [ f (X )] ≠ f (E [ X ] )
我下面的示例显示了与反向转换的冲突(.239与.219)。
set.seed(123)
a=-5
b=2
x=runif(100,0,1)
y=exp(a*x+b+rnorm(100,0,.2))
# plot(x,y)
### NLS Fit
f <- function(x,a,b) {exp(a*x+b)}
fit <- nls(y ~ exp(a*x+b), start = c(a=-10, b=15))
co=coef(fit)
# curve(f(x=x, a=co[1], b=co[2]), add = TRUE,col=2,lwd=1.2)
predict(fit,newdata=data.frame(x=.7))
[1] 0.2393773
### LM Fit
# plot(x,log(y))
# abline(lm(log(y)~x),col=2)
fit=lm(log(y)~x)
temp=predict(fit,newdata=data.frame(x=.7),interval='prediction')
exp(temp)
fit lwr upr
1 0.2199471 0.1492762 0.3240752