Answers:
的Bhattacharyya系数被定义为和可以变成一个距离作为,称为赫林格距离。该Hellinger距离与Kullback-Leibler散度之间的联系为 d ħ(p ,q )d ħ(p ,q )= { 1 - d 乙(p ,q )} 1 / 2
但是,这不是问题:如果将Bhattacharyya距离定义为则 \ begin {align *} d_B(p,q)=-\ log D_B(p,q)&=-\ log \ int \ sqrt {p(x)q(x)} \,\ text {d} x \\&\ stackrel {\ text {def}} {=}-\ log \ int h(x)\,\ text {d} x \\&=-\ log \ int \ frac {h(x)} {p(x)} \,p(x)\,\ text {d} x \\&\ le \ int-\ log \ left \ {\ frac {h(x)} {p(x)} \ right \} \,p( x)\,\ text {d} x \\&= \ int \ frac {-1} {2} \ log \ left \ {\ frac {h ^ 2(x)} {p ^ 2(x)} \\ right \} \,p(x)\,\ text {d} x \\&= \ int \ frac {-1} {2} \ log \ left \ {\ frac {q(x)} {p(x }} \ right \} \,p(x)\,\ text {d} x = \ frac {1} {2} d_ {KL}(p \ | q)\ end {align *} 因此,这两个距离是 {d_ {KL}(p \ | q)\ ge 2d_B(p,q)\ ,.}。d B(p ,q )= − log D B(p ,q )
我们具有完整的排序