为什么随机游走的方差会增加?


28

定义为Y t = Y t 1 + e t随机游走,其中e t是白噪声。表示当前位置是前一个位置的总和加上一个不可预测的项。ÿŤ=ÿŤ-1个+ËŤet

可以证明的是,平均函数μt=0,因为E(Yt)=E(e1+e2+...+et)=E(e1)+E(e2)+...+E(et)=0+0+...+0

但是,为什么方差随时间线性增加?

因为新位置与上一个位置非常相关,这是否与“纯”随机无关?

编辑:

现在,通过可视化大量随机游走,我有了更好的理解,在这里我们可以轻松地观察到总体方差确实随着时间的推移而增加

100 000次随机游走

平均值在零附近。

毕竟这可能是微不足道的,因为在时间序列的早期(比较时间= 10,有100),随机步行者还没有时间去探索。


2
很难看出,任何一个模拟的随机游动的“均值”如何与特定期望相同。根据定义,该期望是在可能的随机游走的整个“集合”中计算的,您的模拟游走只是其中的一个实例。当您模拟许多步行时-也许通过将它们的图形叠加在一个绘图上-您会看到它们围绕水平轴分布。价差如何随t变化?ÿŤŤ
ub

@whuber更有意义!当然,我应该将其视为所有可能散步的一个实例。然后,是的,您可以通过查看图表来了解所有步行的总体方差确实会随着时间的推移而增加。没错吧
伊斯比斯特

1
是的,这是正确的。这是欣赏@Glen_b在数学答案中写的内容的好方法。我发现它有助于熟悉随机游走的许多应用程序:除了经典的布朗运动应用程序之外,它们还描述了扩散,期权定价,测量误差的累积等等。采取其中之一,例如扩散。想象一下,一滴墨水掉入固定的水槽中。尽管它的位置是固定的,但随着时间的流逝而散开:这就是我们实际上可以看到恒定的零均值以及不断增加的方差的方式。
ub

@whuber非常感谢,我现在完全明白了!
伊斯比斯特

Answers:


37

简而言之,因为它不断将下一个增量的方差添加到到达当前位置的方差中。

VarÿŤ=VarË1个+Ë2++ËŤ
=Var(e1)+Var(e2)+...+Var(et) (独立)
=σ2+σ2+...+σ2=tσ2,

我们可以看到,tσ2线性增加与t


每个时间点的平均值为零;如果您对系列进行多次模拟并在给定时间内对系列进行平均,则平均值将接近0

500次模拟随机游走,样本均值和+/-标准偏差

Figure: 500 simulated random walks with sample mean in white and 
± one standard deviation in red. Standard deviation increases with t.


是的,每个错误项都是独立的。并确保这在纸上有意义。但是对于“方差如何线性增加”,我仍然没有感觉良好,但均值保持为零?听起来很奇怪,几乎就像一个矛盾。回答我的问题的数学解释越少呢?
伊斯比斯特

timpal0l-在每个时间点,您要添加另一个术语,该术语不会移动均值,但会增加“噪声”(均值的方差)。因此,均值保持不变,但方差增加(此分布在以后的时间更多地“分散”)。这既是直觉的想法,也是从广义上讲数学所显示的。
Glen_b-恢复莫妮卡2015年

1
感谢您的图表A.Webb。非常好。
Glen_b-恢复莫妮卡2015年

15

这是一种想象的方式。为简单起见,我们更换你的白噪声用抛硬币的ê eiei

ei={1 with Pr=.51 with Pr=.5

这只是简化了可视化,除了减轻我们的想象力之外,切换没有任何实质性的基础。

现在,假设您已经聚集了一大批投币手。他们的指示是,应您的命令,掷硬币,并保持工作结果的准确性,并汇总所有先前的结果。每个单独的脚蹼都是随机游动的一个实例

W=e1+e2+

汇总您所有的军队,应该可以使您对预期的行为有所了解。

flip 1:大约一半的军队将头翻转,一半将尾巴翻转。整个部队的总和期望为零。整个部队中的最大值是1,最小值是1,所以总射程是2W112

flip 2WHHTTW224

...

flip nWHHHTTTnn2n

因此,您可以从这个思想实验中看到以下内容:

  • 步行的期望为零,因为步行的每个步骤都是平衡的。
  • 步行的总范围随步行的长度线性增长。

为了恢复直觉,我们必须放弃标准偏差,并以直观的方式使用范围。


1
标准偏差不是线性增长的,因此最后的评论值得怀疑。
Juho Kokkala 2015年

是的,我正在尝试思考以解决该问题,有什么建议吗?我能想到的只是对中心极限定理的吸引力,这不是很直观。
马修·德鲁里

@JuhoKokkala我同意您的批评,所以我删除了最后的评论。
马修·德鲁里

3

因为新位置与上一个位置非常相关,这是否与“纯”随机无关?

看来,“纯粹”是指独立。在随机行走中,只有步骤是随机的并且彼此独立。如您所述,“位置”是随机的但相互关联的,即不是独立的

正如您所写,对职位的期望仍然为零 Ë[ÿŤ]=0。您观察非零位置的原因是因为位置仍然是随机的,即ÿŤ都是非零的随机数。事实上,当您增加样本数量时,ÿŤ 您会不时观察到这一点,正是因为您注意到,方差随着样本量的增加而增加。

差异正在增加,因为如果您按以下方式展开位置: Yt=Y0+i=0tεt, you can see that the position is a sum of steps, obviously. The variances add up with sample size increasing.

By the way, the means of errors also add up, but in a random walk we usually assume that the means are zero, so adding all zeros will still result in zero. There's random walk with a drift: YtYt1=μ+εt, where Yt will drift away from zero at rate μt with sample time.


2

Let's take a different example for an intuitive explanation: throwing darts at a dartboard. We have a player, who tries to aim for the bullseye, which we take to be a coordinate called 0. The player throws a few times, and indeed, the mean of his throws is 0, but he's not really good, so the variance is 20 cm.

We ask the player to throw a single new dart. Do you expect it to hit bullseye?

No. Although the mean is exactly bullseye, when we sample a throw, it's quite likely not to be bullseye.

In the same way, with random walk, we don't expect a single sample at time t to be anywhere near 0. That's in fact what the variance indicates: how far away do we expect a sample to be?

However, if we take a lot of samples, we'll see that it does center around 0. Just like our darts player will almost never hit bullseye (large variance), but if he throws a lot of darts, he will have them centered around the bullseye (mean).

If we extend this example to the random walk, we can see that the variance increases with time, even though the mean stays at 0. In the random walk case, it seems strange that the mean stays at 0, even though you will intuitively know that it almost never ends up at the origin exactly. However, the same goes for our darter: we can see that any single dart will almost never hit bullseye with an increasing variance, and yet the darts will form a nice cloud around the bullseye - the mean stays the same: 0.


1
This does not describe the phenomenon of the question, which concerns the temporal increase in the spread. That increase is not a function of the number of samples. It is intrinsic.
whuber

1
@whuber I know this answer does not address that, and I had no intention to do so. The OP seemed to struggle with the fact that the mean was completely independent of the variance, even though intuitively we can see that a random walk will almost never end up at the origin, so I tried to clarify that by an example without the difficult dependence on t. However, it was too long for a comment, but indeed not intended as a full answer. I extended the answer to hopefully adress your concern a little.
Sanchises

0

Here's another way to get intuition that variance increases linearly with time.

Returns increase linearly with time. .1% return per month translate into 1.2% return per year - X return per day generate 365X return per year (assuming independence).

It makes sense that the range of returns also increases linearly. If monthly return is .1% on average ±.05%, then it makes intuitive sense that per year it is 1.2% on average ±.6%.

Well, if we intuitively think of variance as range, then it makes intuitive sense that variance increases in the same fashion as return through time, that is linearly.

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.