Let's take a different example for an intuitive explanation: throwing darts at a dartboard. We have a player, who tries to aim for the bullseye, which we take to be a coordinate called 0. The player throws a few times, and indeed, the mean of his throws is 0, but he's not really good, so the variance is 20 cm.
We ask the player to throw a single new dart. Do you expect it to hit bullseye?
No. Although the mean is exactly bullseye, when we sample a throw, it's quite likely not to be bullseye.
In the same way, with random walk, we don't expect a single sample at time t to be anywhere near 0. That's in fact what the variance indicates: how far away do we expect a sample to be?
However, if we take a lot of samples, we'll see that it does center around 0. Just like our darts player will almost never hit bullseye (large variance), but if he throws a lot of darts, he will have them centered around the bullseye (mean).
If we extend this example to the random walk, we can see that the variance increases with time, even though the mean stays at 0. In the random walk case, it seems strange that the mean stays at 0, even though you will intuitively know that it almost never ends up at the origin exactly. However, the same goes for our darter: we can see that any single dart will almost never hit bullseye with an increasing variance, and yet the darts will form a nice cloud around the bullseye - the mean stays the same: 0.