注意: 我发布的是我的一位前学生的问题,由于技术原因,他自己无法发布。
给定来自pdf的Weibull分布的iid样本, 那里是有用的缺失变量表示 ,因此可以使用关联的EM(期望最大化)算法来查找的MLE ,而不是直接使用数值优化?
注意: 我发布的是我的一位前学生的问题,由于技术原因,他自己无法发布。
给定来自pdf的Weibull分布的iid样本, 那里是有用的缺失变量表示 ,因此可以使用关联的EM(期望最大化)算法来查找的MLE ,而不是直接使用数值优化?
Answers:
如果我正确理解了这个问题,我认为答案是肯定的。
写。然后,以开头的EM算法迭代类型为
E步骤:
M步骤:
这是Aitkin和Clayton(1980)为Weibull比例风险模型建议的迭代的一种特殊情况(无检查且无协变量的情况)。也可以在Aitkin等人(1989)的6.11节中找到。
Aitkin,M.和Clayton,D.,1980年。使用GLIM将指数分布,威布尔分布和极值分布拟合到复杂的审查生存数据。应用统计,第156-163页。
Aitkin,M.,Anderson,D.,Francis,B.和Hinde,J.,1989。GLIM中的统计建模。牛津大学出版社。纽约。
该威布尔MLE只有数值解:
让 且β,
1)Likelihoodfunction:
登录Likelihoodfunction:
2)MLE问题: 3)最大化由0-gradients: ∂ 升
This equation is only numerically solvable, e.g. Newton-Raphson algorithm. can then be placed into to complete the ML estimator for the Weibull distribution.
Though this is an old question, it looks like there is an answer in a paper published here: http://home.iitk.ac.in/~kundu/interval-censoring-REVISED-2.pdf
In this work the analysis of interval-censored data, with Weibull distribution as the underlying lifetime distribution has been considered. It is assumed that censoring mechanism is independent and non-informative. As expected, the maximum likelihood estimators cannot be obtained in closed form. In our simulation experiments it is observed that the Newton-Raphson method may not converge many times. An expectation maximization algorithm has been suggested to compute the maximum likelihood estimators, and it converges almost all the times.
In this case the MLE and EM estimators are equivalent, since the MLE estimator is actually just a special case of the EM estimator. (I am assuming a frequentist framework in my answer; this isn't true for EM in a Bayesian context in which we're talking about MAP's). Since there is no missing data (just an unknown parameter), the E step simply returns the log likelihood, regardless of your choice of . The M step then maximizes the log likelihood, yielding the MLE.
EM would be applicable, for example, if you had observed data from a mixture of two Weibull distributions with parameters and , but you didn't know which of these two distributions each observation came from.