虽然我实际上是在物理课上用玻尔兹曼机进行编程的,但我对它们的理论特性并不熟悉。相反,我对图形模型的理论了解很少(关于Lauritzen的《图形模型》的前几章)。
问题:图形模型和玻尔兹曼机器之间是否存在有意义的关系?玻尔兹曼机是图形模型的一种吗?
显然,玻尔兹曼机是一种神经网络。我听说有些神经网络在数学上与图形模型有关,而有些则没有。
CrossValidated上的相关问题没有回答我的问题:
这类似于之前已经问过的先前问题:层次模型,神经网络,图形模型,贝叶斯网络之间的关系是什么?但更具体。
此外,对该问题的公认答案并不能澄清我的困惑-即使神经网络的标准图形表示中的节点不表示随机变量,也不一定意味着不存在这种表示形式。具体来说,我正在考虑马尔可夫链的典型图形表示中的节点如何表示可能状态的集合,而不是随机变量,但是也可以创建一个图形,显示之间的条件依赖关系,这表明每个马尔可夫链实际上都是一个马尔可夫随机场。答案还说,神经网络(可能包括Boltzmann机器)是“判别性的”,但没有更详细地解释该主张的含义,也没有明显的后续问题“图形模型不是可判别的吗?” 已解决。同样,可接受的答案链接到凯文·墨菲(Kevin Murphy)的网站(当我学习贝叶斯网络时,我实际上阅读了他的博士学位论文),但是该网站仅讨论贝叶斯网络,而根本没有提及神经网络,因此无法阐明它们的方式。是不同的。
这另一个问题可能与我的最相似:将神经网络数学建模为图形模型但是,没有一个答案被接受,同样也仅提供参考,但不解释参考(例如,此答案)。希望有一天我能够理解这些参考资料,但现在我已经具备基本的知识水平,并且最希望得到一个尽可能简化的答案。此外,链接到顶部答案(http://www.cs.toronto.edu/~tijmen/csc321/lecture_notes.shtml)的多伦多课程解决了此问题,但没有非常详细。此外,可能无法回答我的问题的一次讲座的笔记也没有公开。
3月25日,讲座13b:信仰网7:43。对于此幻灯片,请记住Boltzmann Machines。那里也有隐藏的单位和可见的单位,而且都是概率性的。BM和SBN的共同点是多于区别。9:16 如今,“图形模型”有时被视为神经网络的特殊类别,但在此处描述的历史中,它们被认为是非常不同的系统类型。