以下是有关作为“辛普森悖论”存在的“图片证明”提供的许多可视化的问题,以及有关术语的问题。
辛普森悖论是一个相当简单的现象来描述,并给予的(原因数值例子,为什么会发生这种情况是深刻而有趣)。矛盾的是,存在2x2x2列联表(Agresti,分类数据分析),其中边际关联与每个条件关联的方向不同。
也就是说,两个亚群中比率的比较都可以朝一个方向进行,但合并总体中的比率可以朝另一个方向进行。在符号中:
存在使得 a + b
但 和
在以下可视化中(从Wikipedia)可以准确地表示出这一点:
一小部分是简单地对应的矢量的斜率,并且很容易在该示例中看到,较短乙矢量具有比相应的L矢量更大的斜率,但合并乙向量具有较小比组合1载体斜率。
有许多形式的非常常见的可视化,特别是在Simpson上的Wikipedia参考文献的开头:
这是混淆的一个很好的例子,隐藏变量(将两个子种群分开)如何显示不同的模式。
但是,从数学上讲,这样的图像绝不对应于作为基于辛普森悖论现象的现象的列联表的显示。首先,回归线位于实值点集数据之上,而不是对列联表中的数据进行计数。
同样,可以在回归线上创建具有任意斜率关系的数据集,但是在列联表中,斜率的不同程度受到限制。也就是说,总体的回归线可以与给定子群体的所有回归正交。但是,在辛普森悖论中,尽管不是反向回归,但亚群的比率即使偏离另一个方向,也不会偏离合并的人群(同样,请参见维基百科的比率比较图)。
对我来说,每次我将后者视为辛普森悖论的形象时,都足以吓一跳。但是,由于我到处都看到(我称之为错误的)示例,所以我很想知道:
- 我是否错过了从原始的Simpson / Yule列联表示例到转化为回归线可视化的真实值的微妙转换?
- 当然,辛普森的错误是一个特殊的例子。已经术语“辛普森悖论”现在已经成为等同于与混杂的错误,所以,无论数学,任何通过隐变量的方向变革,可以称之为辛普森悖论?
附录:以下是对2xmxn(或2乘以m,连续的)表的一般化示例:
如果以投篮方式合并,则防守者越近,球员的投篮机会就越多。按投篮类型分组(实际上是与篮筐的距离),则发生的直观情况越多,则投篮越多,防守队员越远。
我认为此图像是辛普森(Simpson's)对更连续情况(防御者的距离)的概括。但是我仍然看不到回归线示例是Simpson的示例。