问题:假设有10维MCMC链,我准备将抽奖矩阵交给您:10个参数(列)的100,000次迭代(行),我如何才能最好地识别后验模式?我特别关注多种模式。
背景:我认为自己是一位精通计算的统计学家,但是当一位同事问我这个问题时,我为自己无法给出一个合理的答案而感到ham愧。主要关注的是可能会出现多种模式,但前提是必须考虑十个维度中的至少八个左右。我的第一个想法是使用核密度估计,但是对R的搜索没有发现对大于3维问题的希望。同事已经提出了十个维度的临时分箱策略并寻求最大值,但我担心的是带宽可能会导致严重的稀疏性问题或缺乏分辨多种模式的分辨率。就是说,我很乐意接受有关自动带宽建议的建议,与10个内核密度估算器的链接或您所知道的其他任何信息。
顾虑:
我们认为该分布可能会偏斜;因此,我们希望确定后验模式,而不是后验方法。
我们担心可能存在几种后验模式。
如果可能的话,我们希望使用基于R的建议。但是,只要不难以实现,任何算法都可以。我想我不希望通过从头开始自动带宽选择来实现Nd内核密度估计器。