负二项式分布已成为生物信息学中计数数据(特别是来自给定实验的基因组给定区域内预期的测序读数预期数量)的流行模型。解释各不相同:
- 一些人将其解释为类似于Poisson分布的工作原理,但具有附加参数,可以为真实分布建模提供更多自由,方差不一定等于均值
- 一些人将其解释为泊松分布的加权混合(在泊松参数上具有伽玛混合分布)
有没有办法将这些原理与负二项式分布的传统定义相吻合,即在看到一定数量的失败之前先对伯努利试验的成功次数进行建模?还是我应该将它作为泊松分布与伽玛混合分布的加权混合具有与负二项式相同的概率质量函数的快乐巧合?