我一直在使用本文概述的骨干网提取方法:http : //www.pnas.org/content/106/16/6483.abstract
基本上,作者提出了一种基于统计的方法,该方法为图形中的每个边产生概率,该边可能只是偶然发生。我使用的典型统计显着性临界值为0.05。
我一直在将这种方法应用于多个现实世界的网络,有趣的是,某些网络最终没有任何重要的优势。我试图了解这对网络意味着什么。我将方法应用于网络并且没有出现任何明显边缘的唯一一次是当我将方法应用于生成的随机网络时,这正是我们所期望的。
作为一个现实世界网络的示例,您可能已经看到《经济学人》上最近的网络可视化,显示了过去25年美国参议院的两极分化:http://www.economist.com/news/united-states/21591190 -united态阿米巴原虫。我将骨干网提取方法应用于这些网络,并且没有出现明显的边缘。即使原始边缘显然显示出优先的附着和聚类,这仅仅是偶然吗?参议院投票网络基本上是随机的吗?