以下是四十名运动员的结果,这些运动员成功完成了2012年奥运会男子跳远比赛资格赛的合法跳伞,下面是地毯状的内核密度图。
领先主要竞争对手落后一米远比领先一米要容易得多,这可以解释负偏斜。
我怀疑最顶端的一些起皱是由于运动员的目标资格(要求获得前十二名的成绩或8.10米或以上的成绩),而不是达到了最长的距离。前两名成绩为8.11米,略高于自动排位赛的事实,这很有力地暗示了这一点,总决赛中获得奖牌的跳越更长,越分散,分别达到8.31、8.16和8.12米。决赛的结果出现了轻微的,不重大的负偏差。
为了进行比较,heptathlon
R包中的数据集中提供了1988年汉城奥运会七项全能的结果HSAUR
。在那场比赛中,没有预选赛,但是每项赛事都为最终的决赛做出了贡献。女子跳高运动员在跳高结果中表现出明显的负偏斜,而在跳远过程中则表现出负偏斜。有趣的是,即使在投掷事件(铅球和标枪)中,数字也是较高的结果,这种情况并未得到重复。最终分数也有所偏斜。
数据和代码
require(moments)
require(ggplot2)
sourceAddress <- "http://www.olympic.org/olympic-results/london-2012/athletics/long-jump-m"
longjump.df <- read.csv(header=TRUE, sep=",", text="
rank,name,country,distance
1,Mauro Vinicius DA SILVA,BRA,8.11
2,Marquise GOODWIN,USA,8.11
3,Aleksandr MENKOV,RUS,8.09
4,Greg RUTHERFORD,GBR,8.08
5,Christopher TOMLINSON,GBR,8.06
6,Michel TORNEUS,SWE,8.03
7,Godfrey Khotso MOKOENA,RSA,8.02
8,Will CLAYE,USA,7.99
9,Mitchell WATT,AUS,7.99,
10,Tyrone SMITH,BER,7.97,
11,Henry FRAYNE,AUS,7.95,
12,Sebastian BAYER,GER,7.92,
13,Christian REIF,GER,7.92,
14,Eusebio CACERES,ESP,7.92,
15,Aleksandr PETROV,RUS,7.89,
16,Sergey MORGUNOV,RUS,7.87,
17,Mohammad ARZANDEH,IRI,7.84,
18,Ignisious GAISAH,GHA,7.79,
19,Damar FORBES,JAM,7.79,
20,Jinzhe LI,CHN,7.77,
21,Raymond HIGGS,BAH,7.76,
22,Alyn CAMARA,GER,7.72,
23,Salim SDIRI,FRA,7.71,
24,Ndiss Kaba BADJI,SEN,7.66,
25,Arsen SARGSYAN,ARM,7.62,
26,Povilas MYKOLAITIS,LTU,7.61,
27,Stanley GBAGBEKE,NGR,7.59,
28,Marcos CHUVA,POR,7.55,
29,Louis TSATOUMAS,GRE,7.53,
30,Stepan WAGNER,CZE,7.50,
31,Viktor KUZNYETSOV,UKR,7.50,
32,Luis RIVERA,MEX,7.42,
33,Ching-Hsuan LIN,TPE,7.38,
33,Supanara SUKHASVASTI N A,THA,7.38,
35,Boleslav SKHIRTLADZE,GEO,7.26,
36,Xiaoyi ZHANG,CHN,7.25,
37,Mohamed Fathalla DIFALLAH,EGY,7.08,
38,Roman NOVOTNY,CZE,6.96,
39,George KITCHENS,USA,6.84,
40,Vardan PAHLEVANYAN,ARM,6.55,
NA,Luis MELIZ,ESP,NA,
NA,Irving SALADINO,PAN,NA")
roundedSkew <- signif(skewness(longjump.df$distance, na.rm=TRUE), 3)
ggplot(longjump.df, aes(x=distance)) +
xlab("Distance in metres") +
ggtitle("London 2012 Men's Long Jump qualifying round results") +
geom_rug(size=0.8) +
geom_density(fill="steelblue") +
annotate("text", x=7.375, y=0.0625, colour="white", label=paste("Source:", sourceAddress), size=3) +
annotate("rect", xmin = 6.25, xmax = 7.25, ymin = 0.5, ymax = 1.125, fill="white") +
annotate("text", x=6.75, y=1, colour="black", label="Best jump in up to 3 attempts") +
annotate("text", x=6.75, y=.875, colour="black", label="42 athletes competed") +
annotate("text", x=6.75, y=.75, colour="black", label="2 athletes had no legal jump") +
annotate("text", x=6.75, y=.625, colour="black", label=paste("Skewness = ", roundedSkew))
# Results of the top twelve who qualified for the Final were closer to symmetric
skewness(longjump.df$distance[1:12])
# -0.1248782
# Results in the Final (some had 3 jumps, others 6) were only slightly negatively skewed
skewness(c(8.31, 8.16, 8.12, 8.11, 8.10, 8.07, 8.01, 7.93, 7.85, 7.80, 7.78, 7.70))
# -0.08578357
# Compare to Seoul 1988 Heptathlon
require(HSAUR)
skewness(heptathlon)