什么时候(如果有的话)频频论的方法比贝叶斯方法更好?
背景:我没有接受贝叶斯统计方面的正式培训(尽管我对学习更多内容非常感兴趣),但我知道-我想知道的要点是为什么许多人觉得它们似乎比频率统计更可取。甚至我所教授的入门统计学(社会科学)课程中的大学生都发现贝叶斯方法很吸引人-“为什么我们对计算数据的概率感兴趣(给定null呢?)为什么我们不能仅仅量化是零假设还是替代假设?我也读过类似这样的线索,它们也证明了贝叶斯统计的经验优势,但后来我碰到了布拉斯科(Blasco,2001;重点强调): 如果动物育种者对与归纳相关的哲学问题不感兴趣,但对解决问题的工具感兴趣,那么贝叶斯推理派和惯常论推论派都已建立,并且没有必要证明为什么选择另一派或另一派来论证。除了一些复杂的案例外,它们现在都没有操作上的困难... 选择一所学校或另一所学校应与一所学校是否存在另一所学校没有提供的解决方案,解决问题的容易程度有关,以及科学家对特定表达方式的感觉如何。 问题:布拉斯科的名言似乎暗示,有时频频方法实际上比贝叶斯方法更可取。因此,我很好奇:什么时候比贝叶斯方法更偏爱常去方法?我对从概念上(即什么时候知道以原假设为条件的数据的概率特别有用?)和凭经验(即在什么条件下Frequentist方法优于贝叶斯方法?)都可以解决这个问题的答案感兴趣。 如果答案尽可能地易于传达也将是可取的-最好将一些答案反馈给我的班级以与我的学生分享(尽管我知道需要一定程度的技术性)。 最后,尽管经常使用频率统计,但实际上我对贝叶斯全盘获胜的可能性持开放态度。