2
预测多个目标或类别?
假设我正在建立一个预测模型,在该模型中我试图预测多个事件(例如,掷骰子和掷硬币)。我熟悉的大多数算法都只能使用一个目标,因此我想知道是否存在针对此类问题的标准方法。 我看到两个可能的选择。也许最幼稚的方法是将它们简单地视为两个不同的问题,然后组合结果。但是,当两个目标不是独立的(在许多情况下它们可能非常依赖)时,这将带来严重的缺陷。 对我来说,更明智的方法是合并目标属性。因此,在骰子和硬币的情况下,我们将具有状态(等)。但是,这可能导致复合目标中的状态/类的数量变得相当大(很快,如果我们有2个骰子,等等)。此外,在一个属性是分类属性而另一个属性是数字属性的情况下,这似乎很奇怪(例如,如果预测温度和降水类型)。6⋅2=126⋅2=126\cdot 2=12(1,H),(1,T),(2,H)(1,H),(1,T),(2,H)(1, H), (1, T), (2, H) 有没有标准的方法来处理这类事情?另外,是否有专门设计的学习算法来处理此问题?