2
重采样/模拟方法:蒙特卡洛,自举,千斤顶,交叉验证,随机化测试和置换测试
我试图理解不同重采样方法(蒙特卡罗模拟,参数自举,非参数自举,顶峰,交叉验证,随机化测试和置换测试)之间的区别,以及它们在我自己的环境中使用R的实现。 假设我遇到以下情况–我想对Y变量(Yvar)和X变量(Xvar)执行ANOVA 。Xvar是绝对的。我对以下事情感兴趣: (1)p值的意义–错误发现率 (2)效果Xvar等级 大小 Yvar <- c(8,9,10,13,12, 14,18,12,8,9, 1,3,2,3,4) Xvar <- c(rep("A", 5), rep("B", 5), rep("C", 5)) mydf <- data.frame (Yvar, Xvar) 您能帮我用明确的工作示例解释采样差异吗,这些重采样方法是如何工作的? 编辑: 这是我的尝试: Bootstrap 10个Bootstrap样本,样本数量已替换,意味着可以重复样本 boot.samples <- list() for(i in 1:10) { t.xvar <- Xvar[ sample(length(Xvar), length(Xvar), replace=TRUE) ] t.yvar <- Yvar[ sample(length(Yvar), length(Yvar), replace=TRUE) ] …