根据测量误差选择先验
如果您有仪器的测量误差,如何计算适当的先验值?本段摘自Cressie的书“时空数据统计”: 通常情况下,可以使用一些有关测量误差方差的先验信息,从而可以指定相当有用的参数模型。例如,如果我们假设条件独立的测量误差为iid ,那么我们应该为指定一个信息先验。假设我们对环境空气温度感兴趣,并且我们看到仪器制造商的技术指标表明“误差”为±0.1°C。假定此“错误”对应于2个标准差(应检查的假设!),然后我们可以指定\ sigma _ {\ epsilon} ^ {2}的先前平均值为(0.1 / 2)^ 2 = 0.0025Gau(0,σ2ϵ)Gau(0,σϵ2)Gau(0, \sigma_{\epsilon}^2)σ2ϵσϵ2\sigma_{\epsilon}^2±0.1°C±0.1°C±0.1°Cσ2ϵσϵ2\sigma_{\epsilon}^{2}(0.1/2)2=0.0025(0.1/2)2=0.0025(0.1/2)^2 = 0.0025。由于仪器制造商的规范,我们假设分布在0.0025处具有明确定义且相当窄的峰(例如,反伽马)。实际上,我们可以将其固定为0.0025;但是,数据模型错误也可能具有其他不确定性因素(第7.1节)。为避免过程模型错误可能引起的可识别性问题,建模人员应尽可能减少《科学》杂志的不确定性,包括进行旨在复制数据的辅助研究,这一点非常重要。 有谁知道如上所述获得先验值的一般程序是什么(尽管该段仅涉及获得先验均值)?