Questions tagged «neuroimaging»

1
40,000篇神经科学论文可能是错误的
我在《经济学人》上看到了一篇关于看似毁灭性论文的文章 [1] ,该论文令人质疑“ 大约有40,000种已发表的[fMRI]研究。他们说,这种错误是由于“错误的统计假设”。我阅读了这篇论文,发现部分原因是多次比较校正,但是我不是fMRI专家,因此很难遵循。 作者所说的错误假设是什么?为什么要做出这些假设?做出这些假设有哪些方法? 信封计算的背面显示,有40,000张fMRI论文的资金超过10亿美元(研究生的工资,运营成本等)。 [1] Eklund等人,“聚类失败:为什么空间范围的fMRI推论会增加假阳性率,PNAS 2016”

2
如何解释时间序列数据上的PCA?
Freeman et al。,2014年(最近的免费pdf 可在实验室网站上找到)中,我试图理解PCA在最近的期刊文章“使用集群计算大规模地映射大脑活动”中的用法。他们在时间序列数据上使用PCA,并使用PCA权重创建大脑图。 的数据是试平均成像数据,存储为矩阵(称为Ý在纸)与ñ体素(或成像位置在脑中)的时间点(单一刺激的长度到大脑) 。Y^Y^\hat {\mathbf Y}nnn×t^×t^\times \hat t 他们使用SVD得出(表示矩阵转置)。V⊤VY^=USV⊤Y^=USV⊤\hat {\mathbf Y} = \mathbf{USV}^\topV⊤V⊤\mathbf V^\topVV\mathbf V 作者指出 主成分(的列)是长度为向量,而得分(的列)是长度为(体素的数量)的向量,描述了每个体素在方向上的投影。由相应组件给出,在体积上形成投影,即全脑图。吨 ü ÑVV\mathbf Vt^t^\hat tUU\mathbf Unnn 因此,PC是的长度的矢量吨。如何解释PCA教程中通常表达的“第一个主要成分解释了最多的差异”?我们从具有许多高度相关的时间序列的矩阵开始-单个PC时间序列如何解释原始矩阵中的方差?我了解整个“点的高斯云到变化最大的轴的旋转”,但是不确定这与时间序列的关系。作者在陈述时所指的方向是什么:“分数(U的列)是长度为n的向量t^t^\hat tUU\mathbf Unnn (体素数),描述每个体素在相应分量给定的方向上的投影”?主分量时程如何具有方向? 要查看由主成分1和2的线性组合以及相关的脑图得出的时间序列的示例,请转到以下链接,然后将鼠标悬停在XY图中的点上。 我的第二个问题与他们使用主成分分数创建的(状态空间)轨迹有关。 这些通过取第一分数(在我上面已经概述的“视动”的例子的情况下)产生并投射单个试验(用于创建上述试验平均矩阵)到由等式主子空间:J=U⊤Y.J=U⊤Y.\mathbf J = \mathbf U^\top \mathbf Y. 从链接的电影可以看到,状态空间中的每条迹线代表整个大脑的活动。 与关联前两台PC得分的XY图的图形相比,有人能提供状态空间电影的每个“帧”意味着什么的直觉。在给定的“框架”下,将一个试验置于XY状态空间中的一个位置,将另一个试验置于另一个位置,这意味着什么?电影中XY绘图位置与问题第一部分提到的链接图中的主成分迹线有何关系?

1
一篇论文提到了“蒙特卡罗模拟以确定主成分的数量”;它是如何工作的?
我正在对MRI数据进行Matlab分析,其中我在尺寸为10304x236的矩阵上执行了PCA,其中10304是体素(以像素为单位)的数量,而236是时间点的数量。PCA给了我236个特征值及其相关系数。一切都很好。但是,当需要确定要保留多少个组件时,我要复制的论文说如下(请让我知道是否需要澄清,因为这只是整篇论文的一小部分): 然后,我们进行了蒙特卡洛模拟以确定每次扫描从讨厌的ROI数据中提取的主要成分(PC)的数量。通过对与编码和静止干扰ROI数据等级相同的正态分布数据执行PCA,分别为每个受试者的编码和静止数据生成了预期特征值的零分布。如果PC的相关特征值超过了来自Monte Carlo模拟的特征值的第99个置信区间,则从真实的ROI数据中选择PC进行给定的休息或编码扫描。 Tambini&Davachi,PNAS,2013年,海马多体素模式在编码后休息中的持久性与记忆有关。 我绝对不知道该怎么办。我习惯于根据解释的累积方差来选择组件。我的想法是这样的: 然后,我们进行了蒙特卡洛模拟以确定每次扫描从讨厌的ROI数据中提取的主要成分(PC)的数量。 蒙特卡洛模拟人生只是意味着要进行以下1000次(或类似次数),对吗? 通过对与编码和剩余扰动ROI数据同等等级的正态分布数据执行PCA,可以生成预期特征值的零分布。 首先,我假设“相等等级”基本上意味着我将创建一个与原始矩阵大小相同的矩阵(10304x236)。就“等秩的正态分布数据”而言……这是否意味着我应该根据正态分布创建一个随机数为10304x236的矩阵?Matlab具有一个称为“ normrnd”的功能,可以执行此操作,但需要输入mu和sigma。我会使用与从初始数据集中获得的相同的mu和sigma吗?这或多或少是“期望特征值”的含义,因为我不知道期望特征值的分布是什么样。 我猜我的问题或多或少是我不知道如何对特征值进行“零分布”。
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.